Cargando…
Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study
PURPOSE: The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arri...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Japanese Society for Magnetic Resonance in Medicine
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600041/ https://www.ncbi.nlm.nih.gov/pubmed/27001394 http://dx.doi.org/10.2463/mrms.mp.2015-0167 |
_version_ | 1783264174720155648 |
---|---|
author | Uwano, Ikuko Sasaki, Makoto Kudo, Kohsuke Boutelier, Timothé Kameda, Hiroyuki Mori, Futoshi Yamashita, Fumio |
author_facet | Uwano, Ikuko Sasaki, Makoto Kudo, Kohsuke Boutelier, Timothé Kameda, Hiroyuki Mori, Futoshi Yamashita, Fumio |
author_sort | Uwano, Ikuko |
collection | PubMed |
description | PURPOSE: The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. METHODS: The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. RESULTS: The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson’s correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. CONCLUSIONS: Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms. |
format | Online Article Text |
id | pubmed-5600041 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2016 |
publisher | Japanese Society for Magnetic Resonance in Medicine |
record_format | MEDLINE/PubMed |
spelling | pubmed-56000412017-10-23 Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study Uwano, Ikuko Sasaki, Makoto Kudo, Kohsuke Boutelier, Timothé Kameda, Hiroyuki Mori, Futoshi Yamashita, Fumio Magn Reson Med Sci Major Paper PURPOSE: The Bayesian estimation algorithm improves the precision of bolus tracking perfusion imaging. However, this algorithm cannot directly calculate Tmax, the time scale widely used to identify ischemic penumbra, because Tmax is a non-physiological, artificial index that reflects the tracer arrival delay (TD) and other parameters. We calculated Tmax from the TD and mean transit time (MTT) obtained by the Bayesian algorithm and determined its accuracy in comparison with Tmax obtained by singular value decomposition (SVD) algorithms. METHODS: The TD and MTT maps were generated by the Bayesian algorithm applied to digital phantoms with time-concentration curves that reflected a range of values for various perfusion metrics using a global arterial input function. Tmax was calculated from the TD and MTT using constants obtained by a linear least-squares fit to Tmax obtained from the two SVD algorithms that showed the best benchmarks in a previous study. Correlations between the Tmax values obtained by the Bayesian and SVD methods were examined. RESULTS: The Bayesian algorithm yielded accurate TD and MTT values relative to the true values of the digital phantom. Tmax calculated from the TD and MTT values with the least-squares fit constants showed excellent correlation (Pearson’s correlation coefficient = 0.99) and agreement (intraclass correlation coefficient = 0.99) with Tmax obtained from SVD algorithms. CONCLUSIONS: Quantitative analyses of Tmax values calculated from Bayesian-estimation algorithm-derived TD and MTT from a digital phantom correlated and agreed well with Tmax values determined using SVD algorithms. Japanese Society for Magnetic Resonance in Medicine 2016-03-21 /pmc/articles/PMC5600041/ /pubmed/27001394 http://dx.doi.org/10.2463/mrms.mp.2015-0167 Text en © 2016 Japanese Society for Magnetic Resonance in Medicine http://creativecommons.org/licenses/by/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives International License. |
spellingShingle | Major Paper Uwano, Ikuko Sasaki, Makoto Kudo, Kohsuke Boutelier, Timothé Kameda, Hiroyuki Mori, Futoshi Yamashita, Fumio Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title | Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title_full | Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title_fullStr | Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title_full_unstemmed | Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title_short | Tmax Determined Using a Bayesian Estimation Deconvolution Algorithm Applied to Bolus Tracking Perfusion Imaging: A Digital Phantom Validation Study |
title_sort | tmax determined using a bayesian estimation deconvolution algorithm applied to bolus tracking perfusion imaging: a digital phantom validation study |
topic | Major Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600041/ https://www.ncbi.nlm.nih.gov/pubmed/27001394 http://dx.doi.org/10.2463/mrms.mp.2015-0167 |
work_keys_str_mv | AT uwanoikuko tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT sasakimakoto tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT kudokohsuke tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT bouteliertimothe tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT kamedahiroyuki tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT morifutoshi tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy AT yamashitafumio tmaxdeterminedusingabayesianestimationdeconvolutionalgorithmappliedtobolustrackingperfusionimagingadigitalphantomvalidationstudy |