Cargando…

Pentraxin-3 regulates the inflammatory activity of macrophages

BACKGROUND AND AIMS: Pentraxin-3 (PTX3) reportedly has protective roles in atherosclerosis and myocardial infarction, and is a useful biomarker of vascular inflammation. However, the detailed functions of PTX3 in inflammation are yet to be elucidated. This study aimed to investigate the function of...

Descripción completa

Detalles Bibliográficos
Autores principales: Shiraki, Aya, Kotooka, Norihiko, Komoda, Hiroshi, Hirase, Tetsuaki, Oyama, Jun-ichi, Node, Koichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600337/
https://www.ncbi.nlm.nih.gov/pubmed/28955836
http://dx.doi.org/10.1016/j.bbrep.2016.01.009
Descripción
Sumario:BACKGROUND AND AIMS: Pentraxin-3 (PTX3) reportedly has protective roles in atherosclerosis and myocardial infarction, and is a useful biomarker of vascular inflammation. However, the detailed functions of PTX3 in inflammation are yet to be elucidated. This study aimed to investigate the function of PTX3 in macrophages. METHODS: PMA-treated THP-1 cell line (THP-1 macrophage) and monocyte-derived human primary macrophages were treated with recombinant PTX3. Cytokine and chemokine levels in the THP-1 culture medium were measured as well as monocyte chemoattractant protein (MCP-1) concentrations in the Raw 264.7 cell culture medium. PTX3-silenced apoptotic macrophages (THP-1 cell line) were generated to investigate the roles of PTX3 in phagocytosis. RESULTS: In the presence of PTX3, macrophage interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) and MCP-1 levels were reduced significantly (−39%, P=0.007; −21%, P=0.008; and −67%, P=0.0003, respectively), whilst activated transforming growth factor-β (TGF−β) was detected in the THP-1 macrophages (P=0.0004). Additionally, PTX3 induced Akt phosphorylation and reduced nuclear factor-kappa B (NF-κB) activation by 35% (P=0.002), which was induced by TNF-α in THP-1 macrophages. Furthermore, silencing of PTX3 in apoptotic cells resulted in increased macrophage binding, elevated expression rate of HLA-DR (+30%, P=0.015) and CD86 (+204%, P=0.004) positive cells, and induction of IL-1β (+36%, P=0.024) production. Conversely, adding recombinant PTX3 to macrophages reduced CD86 and HLA-DR expression in a dose-dependent manner. CONCLUSIONS: We identified PTX3 as a novel regulator of macrophage activity, and this function suggests that PTX3 acts to resolve inflammation.