Cargando…
Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells
DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600463/ https://www.ncbi.nlm.nih.gov/pubmed/28955815 http://dx.doi.org/10.1016/j.bbrep.2015.11.009 |
_version_ | 1783264249277054976 |
---|---|
author | Ito, Ryo Shimada, Hiroki Yazawa, Kengo Sato, Ikuko Imai, Yuuki Sugawara, Akira Yokoyama, Atsushi |
author_facet | Ito, Ryo Shimada, Hiroki Yazawa, Kengo Sato, Ikuko Imai, Yuuki Sugawara, Akira Yokoyama, Atsushi |
author_sort | Ito, Ryo |
collection | PubMed |
description | DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1) promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA. |
format | Online Article Text |
id | pubmed-5600463 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2015 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-56004632017-09-27 Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells Ito, Ryo Shimada, Hiroki Yazawa, Kengo Sato, Ikuko Imai, Yuuki Sugawara, Akira Yokoyama, Atsushi Biochem Biophys Rep Research Article DNA methylation is closely involved in the regulation of cellular differentiation, including chondrogenic differentiation of mesenchymal stem cells. Recent studies showed that Ten–eleven translocation (TET) family proteins converted 5-methylcytosine (5mC) to 5-hydroxymethylcytosine, 5-formylcytosine and 5carboxylcytosine by oxidation. These reactions constitute potential mechanisms for active demethylation of methylated DNA. However, the relationship between the DNA methylation patterns and the effects of TET family proteins in chondrocyte differentiation is still unclear. In this study, we showed that DNA hydroxylation of 5mC was increased during chondrocytic differentiation of C3H10T1/2 cells and that the expression of Tet1 was particularly enhanced. Moreover, knockdown experiments revealed that the downregulation of Tet1 expression caused decreases in chondrogenesis markers such as type 2 and type 10 collagens. Furthermore, we found that TET proteins had a site preference for hydroxylation of 5mC on the Insulin-like growth factor 1 (Igf1) promoter in chondrocytes. Taken together, we showed that the expression of Tet1 was specifically facilitated in chondrocyte differentiation and Tet1 can regulate chondrocyte marker gene expression presumably through its hydroxylation activity for DNA. Elsevier 2015-11-12 /pmc/articles/PMC5600463/ /pubmed/28955815 http://dx.doi.org/10.1016/j.bbrep.2015.11.009 Text en © 2015 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Ito, Ryo Shimada, Hiroki Yazawa, Kengo Sato, Ikuko Imai, Yuuki Sugawara, Akira Yokoyama, Atsushi Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title | Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title_full | Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title_fullStr | Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title_full_unstemmed | Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title_short | Hydroxylation of methylated DNA by TET1 in chondrocyte differentiation of C3H10T1/2 cells |
title_sort | hydroxylation of methylated dna by tet1 in chondrocyte differentiation of c3h10t1/2 cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600463/ https://www.ncbi.nlm.nih.gov/pubmed/28955815 http://dx.doi.org/10.1016/j.bbrep.2015.11.009 |
work_keys_str_mv | AT itoryo hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT shimadahiroki hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT yazawakengo hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT satoikuko hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT imaiyuuki hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT sugawaraakira hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells AT yokoyamaatsushi hydroxylationofmethylateddnabytet1inchondrocytedifferentiationofc3h10t12cells |