Cargando…

Enhancement of water diffusion and compression performance of crosslinked alginate films with a minuscule amount of graphene oxide

A series of calcium alginate composite hydrogels with several calcium chloride contents ranging from 3 to 18 wt.% with and without 0.1 wt.% of graphene oxide (GO) was prepared in order to study the effect of crosslinking and nanofilling on water diffusion and compression performance. Thus, for high...

Descripción completa

Detalles Bibliográficos
Autores principales: Serrano-Aroca, Ángel, Ruiz-Pividal, Juan-Francisco, Llorens-Gámez, Mar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5600980/
https://www.ncbi.nlm.nih.gov/pubmed/28916741
http://dx.doi.org/10.1038/s41598-017-10260-x
Descripción
Sumario:A series of calcium alginate composite hydrogels with several calcium chloride contents ranging from 3 to 18 wt.% with and without 0.1 wt.% of graphene oxide (GO) was prepared in order to study the effect of crosslinking and nanofilling on water diffusion and compression performance. Thus, for high crosslinker contents, these composite hydrogels exhibited ultrafast diffusion of liquid water and excellent compression properties as compared with control (0 wt.% GO and the same crosslinking). These remarkable results are produced due to calcium cations are able to crosslink alginate and also graphene oxide nanosheets to form large crosslinked GO networks inside the calcium alginate hydrogels. Besides, these crosslinked GO/calcium alginate networks present nanochannels, as confirmed by electron microscopy, able to improve significantly water diffusion. Thus, these composite materials are very promising for many industrial applications demanding low-cost hydrogels with improved mechanical and water diffusion properties.