Cargando…

A V0 core neuronal circuit for inspiration

Breathing in mammals relies on permanent rhythmic and bilaterally synchronized contractions of inspiratory pump muscles. These motor drives emerge from interactions between critical sets of brainstem neurons whose origins and synaptic ordered organization remain obscure. Here, we show, using a virus...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Jinjin, Capelli, Paolo, Bouvier, Julien, Goulding, Martyn, Arber, Silvia, Fortin, Gilles
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601429/
https://www.ncbi.nlm.nih.gov/pubmed/28916788
http://dx.doi.org/10.1038/s41467-017-00589-2
Descripción
Sumario:Breathing in mammals relies on permanent rhythmic and bilaterally synchronized contractions of inspiratory pump muscles. These motor drives emerge from interactions between critical sets of brainstem neurons whose origins and synaptic ordered organization remain obscure. Here, we show, using a virus-based transsynaptic tracing strategy from the diaphragm muscle in the mouse, that the principal inspiratory premotor neurons share V0 identity with, and are connected by, neurons of the preBötzinger complex that paces inspiration. Deleting the commissural projections of V0s results in left-right desynchronized inspiratory motor commands in reduced brain preparations and breathing at birth. This work reveals the existence of a core inspiratory circuit in which V0 to V0 synapses enabling function of the rhythm generator also direct its output to secure bilaterally coordinated contractions of inspiratory effector muscles required for efficient breathing.