Cargando…

Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis

Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endos...

Descripción completa

Detalles Bibliográficos
Autores principales: Tanifuji, Goro, Cenci, Ugo, Moog, Daniel, Dean, Samuel, Nakayama, Takuro, David, Vojtěch, Fiala, Ivan, Curtis, Bruce A., Sibbald, Shannon J., Onodera, Naoko T., Colp, Morgan, Flegontov, Pavel, Johnson-MacKinnon, Jessica, McPhee, Michael, Inagaki, Yuji, Hashimoto, Tetsuo, Kelly, Steven, Gull, Keith, Lukeš, Julius, Archibald, John M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601477/
https://www.ncbi.nlm.nih.gov/pubmed/28916813
http://dx.doi.org/10.1038/s41598-017-11866-x
_version_ 1783264392618442752
author Tanifuji, Goro
Cenci, Ugo
Moog, Daniel
Dean, Samuel
Nakayama, Takuro
David, Vojtěch
Fiala, Ivan
Curtis, Bruce A.
Sibbald, Shannon J.
Onodera, Naoko T.
Colp, Morgan
Flegontov, Pavel
Johnson-MacKinnon, Jessica
McPhee, Michael
Inagaki, Yuji
Hashimoto, Tetsuo
Kelly, Steven
Gull, Keith
Lukeš, Julius
Archibald, John M.
author_facet Tanifuji, Goro
Cenci, Ugo
Moog, Daniel
Dean, Samuel
Nakayama, Takuro
David, Vojtěch
Fiala, Ivan
Curtis, Bruce A.
Sibbald, Shannon J.
Onodera, Naoko T.
Colp, Morgan
Flegontov, Pavel
Johnson-MacKinnon, Jessica
McPhee, Michael
Inagaki, Yuji
Hashimoto, Tetsuo
Kelly, Steven
Gull, Keith
Lukeš, Julius
Archibald, John M.
author_sort Tanifuji, Goro
collection PubMed
description Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba.
format Online
Article
Text
id pubmed-5601477
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56014772017-09-20 Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis Tanifuji, Goro Cenci, Ugo Moog, Daniel Dean, Samuel Nakayama, Takuro David, Vojtěch Fiala, Ivan Curtis, Bruce A. Sibbald, Shannon J. Onodera, Naoko T. Colp, Morgan Flegontov, Pavel Johnson-MacKinnon, Jessica McPhee, Michael Inagaki, Yuji Hashimoto, Tetsuo Kelly, Steven Gull, Keith Lukeš, Julius Archibald, John M. Sci Rep Article Endosymbiotic relationships between eukaryotic and prokaryotic cells are common in nature. Endosymbioses between two eukaryotes are also known; cyanobacterium-derived plastids have spread horizontally when one eukaryote assimilated another. A unique instance of a non-photosynthetic, eukaryotic endosymbiont involves members of the genus Paramoeba, amoebozoans that infect marine animals such as farmed fish and sea urchins. Paramoeba species harbor endosymbionts belonging to the Kinetoplastea, a diverse group of flagellate protists including some that cause devastating diseases. To elucidate the nature of this eukaryote-eukaryote association, we sequenced the genomes and transcriptomes of Paramoeba pemaquidensis and its endosymbiont Perkinsela sp. The endosymbiont nuclear genome is ~9.5 Mbp in size, the smallest of a kinetoplastid thus far discovered. Genomic analyses show that Perkinsela sp. has lost the ability to make a flagellum but retains hallmark features of kinetoplastid biology, including polycistronic transcription, trans-splicing, and a glycosome-like organelle. Mosaic biochemical pathways suggest extensive ‘cross-talk’ between the two organisms, and electron microscopy shows that the endosymbiont ingests amoeba cytoplasm, a novel form of endosymbiont-host communication. Our data reveal the cell biological and biochemical basis of the obligate relationship between Perkinsela sp. and its amoeba host, and provide a foundation for understanding pathogenicity determinants in economically important Paramoeba. Nature Publishing Group UK 2017-09-15 /pmc/articles/PMC5601477/ /pubmed/28916813 http://dx.doi.org/10.1038/s41598-017-11866-x Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Tanifuji, Goro
Cenci, Ugo
Moog, Daniel
Dean, Samuel
Nakayama, Takuro
David, Vojtěch
Fiala, Ivan
Curtis, Bruce A.
Sibbald, Shannon J.
Onodera, Naoko T.
Colp, Morgan
Flegontov, Pavel
Johnson-MacKinnon, Jessica
McPhee, Michael
Inagaki, Yuji
Hashimoto, Tetsuo
Kelly, Steven
Gull, Keith
Lukeš, Julius
Archibald, John M.
Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title_full Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title_fullStr Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title_full_unstemmed Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title_short Genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
title_sort genome sequencing reveals metabolic and cellular interdependence in an amoeba-kinetoplastid symbiosis
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601477/
https://www.ncbi.nlm.nih.gov/pubmed/28916813
http://dx.doi.org/10.1038/s41598-017-11866-x
work_keys_str_mv AT tanifujigoro genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT cenciugo genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT moogdaniel genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT deansamuel genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT nakayamatakuro genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT davidvojtech genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT fialaivan genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT curtisbrucea genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT sibbaldshannonj genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT onoderanaokot genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT colpmorgan genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT flegontovpavel genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT johnsonmackinnonjessica genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT mcpheemichael genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT inagakiyuji genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT hashimototetsuo genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT kellysteven genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT gullkeith genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT lukesjulius genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis
AT archibaldjohnm genomesequencingrevealsmetabolicandcellularinterdependenceinanamoebakinetoplastidsymbiosis