Cargando…
Predicting clinical outcomes from large scale cancer genomic profiles with deep survival models
Translating the vast data generated by genomic platforms into accurate predictions of clinical outcomes is a fundamental challenge in genomic medicine. Many prediction methods face limitations in learning from the high-dimensional profiles generated by these platforms, and rely on experts to hand-se...
Autores principales: | Yousefi, Safoora, Amrollahi, Fatemeh, Amgad, Mohamed, Dong, Chengliang, Lewis, Joshua E., Song, Congzheng, Gutman, David A., Halani, Sameer H., Velazquez Vega, Jose Enrique, Brat, Daniel J., Cooper, Lee A. D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5601479/ https://www.ncbi.nlm.nih.gov/pubmed/28916782 http://dx.doi.org/10.1038/s41598-017-11817-6 |
Ejemplares similares
-
Interactive phenotyping of large-scale histology imaging data with HistomicsML
por: Nalisnik, Michael, et al.
Publicado: (2017) -
Predicting cancer outcomes from histology and genomics using convolutional networks
por: Mobadersany, Pooya, et al.
Publicado: (2018) -
Multi-faceted computational assessment of risk and progression in oligodendroglioma implicates NOTCH and PI3K pathways
por: Halani, Sameer H., et al.
Publicado: (2018) -
The Proneural Molecular Signature Is Enriched in Oligodendrogliomas and Predicts Improved Survival among Diffuse Gliomas
por: Cooper, Lee A. D., et al.
Publicado: (2010) -
Clinical utility of 5-aminolevulinic acid HCl to better visualize and more completely remove gliomas
por: Halani, Sameer H, et al.
Publicado: (2016)