Cargando…

Biomacromolecules as tools and objects in nanometrology—current challenges and perspectives

Nucleic acids, proteins, and polysaccharides are the most important classes of biopolymers. The inherent properties of biomacromolecules are contrary to those of well-defined small molecules consequently raising a number of specific challenges which become particularly apparent if biomacromolecules...

Descripción completa

Detalles Bibliográficos
Autores principales: Hashemi, Payam, Luckau, Luise, Mischnick, Petra, Schmidt, Sarah, Stosch, Rainer, Wünsch, Bettina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602082/
https://www.ncbi.nlm.nih.gov/pubmed/28808731
http://dx.doi.org/10.1007/s00216-017-0554-9
Descripción
Sumario:Nucleic acids, proteins, and polysaccharides are the most important classes of biopolymers. The inherent properties of biomacromolecules are contrary to those of well-defined small molecules consequently raising a number of specific challenges which become particularly apparent if biomacromolecules are treated as objects in quantitative analysis. At the same time, their specific functional ability of molecular recognition and self-organization (e.g., enzymes, antibodies, DNA) enables us to make biomacromolecules serving as molecular tools in biochemistry and molecular biology, or as precisely controllable dimensional platforms for nanometrological applications. Given the complexity of biomacromolecules, quantitative analysis is not limited to the measurement of their concentration but also involves the determination of numerous descriptors related to structure, interaction, activity, and function. Among the biomacromolecules, glycans set examples that quantitative characterization is not necessarily directed to the measurement of amount-of-substance concentration but instead involves the determination of relative proportions (molar ratios) of structural features for comparison with theoretical models. This article addresses current activities to combine optical techniques such as Raman spectroscopy with isotope dilution approaches to realize reference measurement procedures for the quantification of protein biomarkers as an alternative to mass spectrometry-based techniques. Furthermore, it is explored how established ID-MS protocols are being modified to make them applicable for quantifying virus proteins to measure the HIV viral load in blood samples. As an example from the class of carbohydrates, the challenges in accurate determination of substitution patterns are outlined and discussed. Finally, it is presented that biomacromolecules can also serve as tools in quantitative measurements of dimensions with an example of DNA origami to generate defined dimensional standards to be used for calibration in super-resolution fluorescence microscopy. [Figure: see text]