Cargando…
The ML-EM Algorithm is Not Optimal for Poisson Noise
The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603291/ https://www.ncbi.nlm.nih.gov/pubmed/28935996 |
Sumario: | The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an approximate solution that is close to the true solution. It is well-known that the ML-EM algorithm at early iterations converges towards the true solution and then in later iterations diverges away from the true solution. Therefore a potential good approximate solution can only be obtained by early termination. This short paper argues that the ML-EM algorithm is not optimal in providing such an approximate solution. In order to show that the ML-EM algorithm is not optimal, it is only necessary to provide a different algorithm that performs better. An alternative algorithm is suggested in this paper and this alternative algorithm is able to outperform the ML-EM algorithm. |
---|