Cargando…
The ML-EM Algorithm is Not Optimal for Poisson Noise
The ML-EM (maximum likelihood expectation maximization) algorithm is the most popular image reconstruction method when the measurement noise is Poisson distributed. This short paper considers the problem that for a given noisy projection data set, whether the ML-EM algorithm is able to provide an ap...
Autor principal: | Zeng, Gengsheng L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603291/ https://www.ncbi.nlm.nih.gov/pubmed/28935996 |
Ejemplares similares
-
Poisson-noise weighted filter for time-of-flight positron emission tomography
por: Zeng, Gengsheng L., et al.
Publicado: (2020) -
Poisson Noise Obscures Hypometabolic Lesions in PET
por: Kerr, Wesley T., et al.
Publicado: (2012) -
Pre-filter that incorporates the noise model
por: Zeng, Gengsheng L.
Publicado: (2020) -
Directional TGV-Based Image Restoration under Poisson Noise
por: di Serafino, Daniela, et al.
Publicado: (2021) -
EM and SAGE Algorithms for DOA Estimation in the Presence of Unknown Uniform Noise
por: Gong, Ming-Yan, et al.
Publicado: (2023)