Cargando…
Rational development of catalytic Au(I)/Au(III) arylation involving mild oxidative addition of aryl halides
The reluctance of gold to achieve oxidative addition reaction is considered as an intrinsic limitation for the development of gold-catalyzed cross-coupling reactions with simple and ubiquitous aryl halide electrophiles. Here, we report the rational construction of a Au(I)/Au(III) catalytic cycle inv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603523/ https://www.ncbi.nlm.nih.gov/pubmed/28924193 http://dx.doi.org/10.1038/s41467-017-00672-8 |
Sumario: | The reluctance of gold to achieve oxidative addition reaction is considered as an intrinsic limitation for the development of gold-catalyzed cross-coupling reactions with simple and ubiquitous aryl halide electrophiles. Here, we report the rational construction of a Au(I)/Au(III) catalytic cycle involving a sequence of Csp(2)–X oxidative addition, Csp(2)–H auration and reductive elimination, allowing a gold-catalyzed direct arylation of arenes with aryl halides. Key to this discovery is the use of Me-Dalphos, a simple ancillary (P,N) ligand, that allows the bottleneck oxidative addition of aryl iodides and bromides to readily proceed under mild conditions. The hemilabile character of the amino group plays a crucial role in this transformation, as substantiated by density functional theory calculations. |
---|