Cargando…
A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information
The emergence of large-scale genomic, chemical and pharmacological data provides new opportunities for drug discovery and repositioning. In this work, we develop a computational pipeline, called DTINet, to predict novel drug–target interactions from a constructed heterogeneous network, which integra...
Autores principales: | Luo, Yunan, Zhao, Xinbin, Zhou, Jingtian, Yang, Jinglin, Zhang, Yanqing, Kuang, Wenhua, Peng, Jian, Chen, Ligong, Zeng, Jianyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603535/ https://www.ncbi.nlm.nih.gov/pubmed/28924171 http://dx.doi.org/10.1038/s41467-017-00680-8 |
Ejemplares similares
-
RepCOOL: computational drug repositioning via integrating heterogeneous biological networks
por: Fahimian, Ghazale, et al.
Publicado: (2020) -
Computational drug repositioning through heterogeneous network clustering
por: Wu, Chao, et al.
Publicado: (2013) -
An integrative drug repositioning framework discovered a potential therapeutic agent targeting COVID-19
por: Ge, Yiyue, et al.
Publicado: (2021) -
Drug-Disease Association Prediction Using Heterogeneous Networks for Computational Drug Repositioning
por: Kim, Yoonbee, et al.
Publicado: (2022) -
Enriching limited information on rare diseases from heterogeneous networks for drug repositioning
por: Cao, Hongkui, et al.
Publicado: (2021)