Cargando…

Implication of the glutamate–cystine antiporter xCT in schizophrenia cases linked to impaired GSH synthesis

xCT is the specific chain of the cystine/glutamate antiporter, which is widely reported to support anti-oxidant defenses in vivo. xCT is therefore at the crossroads between two processes that are involved in schizophrenia: oxidative stress and glutamatergic neurotransmission. But data from human stu...

Descripción completa

Detalles Bibliográficos
Autores principales: Fournier, M., Monin, A., Ferrari, C., Baumann, P. S., Conus, P., Do, K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603608/
https://www.ncbi.nlm.nih.gov/pubmed/28924227
http://dx.doi.org/10.1038/s41537-017-0035-3
Descripción
Sumario:xCT is the specific chain of the cystine/glutamate antiporter, which is widely reported to support anti-oxidant defenses in vivo. xCT is therefore at the crossroads between two processes that are involved in schizophrenia: oxidative stress and glutamatergic neurotransmission. But data from human studies implicating xCT in the illness and clarifying the upstream mechanisms of xCT imbalance are still scarce. Low glutathione (GSH) levels and genetic risk in GCLC (Glutamate–Cysteine Ligase Catalytic subunit), the gene of limiting synthesizing enzyme for GSH, are both associated with schizophrenia. In the present study, we aimed at determining if xCT regulation by the redox system is involved in schizophrenia pathophysiology. We assessed whether modulating GCLC expression impact on xCT expression and activity (i) in fibroblasts from patients and controls with different GCLC genotypes which are known to affect GCLC regulation and GSH levels; (ii) in rat brain glial cells, i.e., astrocytes and oligodendrocytes, with a knock-down of GCLC. Our results highlight that decreased GCLC expression leads to an upregulation of xCT levels in patients’ fibroblasts as well as in astrocytes. These results support the implication of xCT dysregulation in illness pathophysiology and further indicate that it can result from redox changes. Additionally, we showed that these anomalies may already take place at early stages of psychosis and be more prominent in a subgroup of patients with GCLC high-risk genotypes. These data add to the existing evidence identifying the inflammatory/redox systems as important targets to treat schizophrenia already at early stages.