Cargando…
Illustrating, Quantifying, and Correcting for Bias in Post-hoc Analysis of Gene-Based Rare Variant Tests of Association
To date, gene-based rare variant testing approaches have focused on aggregating information across sets of variants to maximize statistical power in identifying genes showing significant association with diseases. Beyond identifying genes that are associated with diseases, the identification of caus...
Autores principales: | Grinde, Kelsey E., Arbet, Jaron, Green, Alden, O'Connell, Michael, Valcarcel, Alessandra, Westra, Jason, Tintle, Nathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603735/ https://www.ncbi.nlm.nih.gov/pubmed/28959274 http://dx.doi.org/10.3389/fgene.2017.00117 |
Ejemplares similares
-
A general method for combining different family-based rare-variant tests of association to improve power and robustness of a wide range of genetic architectures
por: Green, Alden, et al.
Publicado: (2016) -
A multistep approach to single nucleotide polymorphism–set analysis: an evaluation of power and type I error of gene-based tests of association after pathway-based association tests
por: Valcarcel, Alessandra, et al.
Publicado: (2016) -
Multi-Set Testing Strategies Show Good Behavior When Applied to Very Large Sets of Rare Variants
por: Fore, Ruby, et al.
Publicado: (2020) -
Using Summary Statistics to Model Multiplicative Combinations of Initially Analyzed Phenotypes With a Flexible Choice of Covariates
por: Wolf , Jack M., et al.
Publicado: (2021) -
Evaluating the impact of genotype errors on rare variant tests of association
por: Cook, Kaitlyn, et al.
Publicado: (2014)