Cargando…

Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution

Extreme conditions permit unique materials to be synthesized and can significantly update our view of the periodic table. In the case of group IV elements, carbon was always considered to be distinct with respect to its heavier homologues in forming oxides. Here we report the synthesis of a crystall...

Descripción completa

Detalles Bibliográficos
Autores principales: Santoro, Mario, Gorelli, Federico A., Bini, Roberto, Salamat, Ashkan, Garbarino, Gaston, Levelut, Claire, Cambon, Olivier, Haines, Julien
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603768/
https://www.ncbi.nlm.nih.gov/pubmed/24781844
http://dx.doi.org/10.1038/ncomms4761
_version_ 1783264767329173504
author Santoro, Mario
Gorelli, Federico A.
Bini, Roberto
Salamat, Ashkan
Garbarino, Gaston
Levelut, Claire
Cambon, Olivier
Haines, Julien
author_facet Santoro, Mario
Gorelli, Federico A.
Bini, Roberto
Salamat, Ashkan
Garbarino, Gaston
Levelut, Claire
Cambon, Olivier
Haines, Julien
author_sort Santoro, Mario
collection PubMed
description Extreme conditions permit unique materials to be synthesized and can significantly update our view of the periodic table. In the case of group IV elements, carbon was always considered to be distinct with respect to its heavier homologues in forming oxides. Here we report the synthesis of a crystalline CO(2)–SiO(2) solid solution by reacting carbon dioxide and silica in a laser-heated diamond anvil cell (P=16–22 GPa, T>4,000 K), showing that carbon enters silica. Remarkably, this material is recovered to ambient conditions. X-ray diffraction shows that the crystal adopts a densely packed α-cristobalite structure (P4(1)2(1)2) with carbon and silicon in fourfold coordination to oxygen at pressures where silica normally adopts a sixfold coordinated rutile-type stishovite structure. An average formula of C(0.6(1))Si(0.4(1))O(2) is consistent with X-ray diffraction and Raman spectroscopy results. These findings may modify our view on oxide chemistry, which is of great interest for materials science, as well as Earth and planetary sciences.
format Online
Article
Text
id pubmed-5603768
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-56037682017-09-22 Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution Santoro, Mario Gorelli, Federico A. Bini, Roberto Salamat, Ashkan Garbarino, Gaston Levelut, Claire Cambon, Olivier Haines, Julien Nat Commun Article Extreme conditions permit unique materials to be synthesized and can significantly update our view of the periodic table. In the case of group IV elements, carbon was always considered to be distinct with respect to its heavier homologues in forming oxides. Here we report the synthesis of a crystalline CO(2)–SiO(2) solid solution by reacting carbon dioxide and silica in a laser-heated diamond anvil cell (P=16–22 GPa, T>4,000 K), showing that carbon enters silica. Remarkably, this material is recovered to ambient conditions. X-ray diffraction shows that the crystal adopts a densely packed α-cristobalite structure (P4(1)2(1)2) with carbon and silicon in fourfold coordination to oxygen at pressures where silica normally adopts a sixfold coordinated rutile-type stishovite structure. An average formula of C(0.6(1))Si(0.4(1))O(2) is consistent with X-ray diffraction and Raman spectroscopy results. These findings may modify our view on oxide chemistry, which is of great interest for materials science, as well as Earth and planetary sciences. Nature Publishing Group 2014-04-30 /pmc/articles/PMC5603768/ /pubmed/24781844 http://dx.doi.org/10.1038/ncomms4761 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.
spellingShingle Article
Santoro, Mario
Gorelli, Federico A.
Bini, Roberto
Salamat, Ashkan
Garbarino, Gaston
Levelut, Claire
Cambon, Olivier
Haines, Julien
Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title_full Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title_fullStr Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title_full_unstemmed Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title_short Carbon enters silica forming a cristobalite-type CO(2)–SiO(2) solid solution
title_sort carbon enters silica forming a cristobalite-type co(2)–sio(2) solid solution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603768/
https://www.ncbi.nlm.nih.gov/pubmed/24781844
http://dx.doi.org/10.1038/ncomms4761
work_keys_str_mv AT santoromario carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT gorellifedericoa carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT biniroberto carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT salamatashkan carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT garbarinogaston carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT levelutclaire carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT cambonolivier carbonenterssilicaformingacristobalitetypeco2sio2solidsolution
AT hainesjulien carbonenterssilicaformingacristobalitetypeco2sio2solidsolution