Cargando…

Comparison of 4 Methods for Dynamization of Locking Plates: Differences in the Amount and Type of Fracture Motion

BACKGROUND: Decreasing the stiffness of locked plating constructs can promote natural fracture healing by controlled dynamization of the fracture. This biomechanical study compared the effect of 4 different stiffness reduction methods on interfragmentary motion by measuring axial motion and shear mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Henschel, Julia, Tsai, Stanley, Fitzpatrick, Daniel C., Marsh, John L., Madey, Steven M., Bottlang, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Journal of Orthopaedic Trauma 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5603978/
https://www.ncbi.nlm.nih.gov/pubmed/28657927
http://dx.doi.org/10.1097/BOT.0000000000000879
Descripción
Sumario:BACKGROUND: Decreasing the stiffness of locked plating constructs can promote natural fracture healing by controlled dynamization of the fracture. This biomechanical study compared the effect of 4 different stiffness reduction methods on interfragmentary motion by measuring axial motion and shear motion at the fracture site. METHODS: Distal femur locking plates were applied to bridge a metadiaphyseal fracture in femur surrogates. A locked construct with a short-bridge span served as the nondynamized control group (LOCKED). Four different methods for stiffness reduction were evaluated: replacing diaphyseal locking screws with nonlocked screws (NONLOCKED); bridge dynamization (BRIDGE) with 2 empty screw holes proximal to the fracture; screw dynamization with far cortical locking (FCL) screws; and plate dynamization with active locking plates (ACTIVE). Construct stiffness, axial motion, and shear motion at the fracture site were measured to characterize each dynamization methods. RESULTS: Compared with LOCKED control constructs, NONLOCKED constructs had a similar stiffness (P = 0.08), axial motion (P = 0.07), and shear motion (P = 0.97). BRIDGE constructs reduced stiffness by 45% compared with LOCKED constructs (P < 0.001), but interfragmentary motion was dominated by shear. Compared with LOCKED constructs, FCL and ACTIVE constructs reduced stiffness by 62% (P < 0.001) and 75% (P < 0.001), respectively, and significantly increased axial motion, but not shear motion. CONCLUSIONS: In a surrogate model of a distal femur fracture, replacing locked with nonlocked diaphyseal screws does not significantly decrease construct stiffness and does not enhance interfragmentary motion. A longer bridge span primarily increases shear motion, not axial motion. The use of FCL screws or active plating delivers axial dynamization without introducing shear motion.