Cargando…

Evolutionary Dynamics of Regulatory Changes Underlying Gene Expression Divergence among Saccharomyces Species

Heritable changes in gene expression are important contributors to phenotypic differences within and between species and are caused by mutations in cis-regulatory elements and trans-regulatory factors. Although previous work has suggested that cis-regulatory differences preferentially accumulate wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Metzger, Brian P.H., Wittkopp, Patricia J., Coolon, Joseph. D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5604594/
https://www.ncbi.nlm.nih.gov/pubmed/28338820
http://dx.doi.org/10.1093/gbe/evx035
Descripción
Sumario:Heritable changes in gene expression are important contributors to phenotypic differences within and between species and are caused by mutations in cis-regulatory elements and trans-regulatory factors. Although previous work has suggested that cis-regulatory differences preferentially accumulate with time, technical restrictions to closely related species and limited comparisons have made this observation difficult to test. To address this problem, we used allele-specific RNA-seq data from Saccharomyces species and hybrids to expand both the evolutionary timescale and number of species in which the evolution of regulatory divergence has been investigated. We find that as sequence divergence increases, cis-regulatory differences do indeed become the dominant type of regulatory difference between species, ultimately becoming a better predictor of expression divergence than trans-regulatory divergence. When both cis- and trans-regulatory differences accumulate for the same gene, they more often have effects in opposite directions than in the same direction, indicating widespread compensatory changes underlying the evolution of gene expression. The frequency of compensatory changes within and between species and the magnitude of effect for the underlying cis- and trans-regulatory differences suggests that compensatory changes accumulate primarily due to selection against divergence in gene expression as a result of weak stabilizing selection on gene expression levels. These results show that cis-regulatory differences and compensatory changes in regulation play increasingly important roles in the evolution of gene expression as time increases.