Cargando…
Big Data in radiation therapy: challenges and opportunities
Data collected and generated by radiation oncology can be classified by the Volume, Variety, Velocity and Veracity (4Vs) of Big Data because they are spread across different care providers and not easily shared owing to patient privacy protection. The magnitude of the 4Vs is substantial in oncology,...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The British Institute of Radiology.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605034/ https://www.ncbi.nlm.nih.gov/pubmed/27781485 http://dx.doi.org/10.1259/bjr.20160689 |
_version_ | 1783264942690926592 |
---|---|
author | Lustberg, Tim van Soest, Johan Jochems, Arthur Deist, Timo van Wijk, Yvonka Walsh, Sean Lambin, Philippe Dekker, Andre |
author_facet | Lustberg, Tim van Soest, Johan Jochems, Arthur Deist, Timo van Wijk, Yvonka Walsh, Sean Lambin, Philippe Dekker, Andre |
author_sort | Lustberg, Tim |
collection | PubMed |
description | Data collected and generated by radiation oncology can be classified by the Volume, Variety, Velocity and Veracity (4Vs) of Big Data because they are spread across different care providers and not easily shared owing to patient privacy protection. The magnitude of the 4Vs is substantial in oncology, especially owing to imaging modalities and unclear data definitions. To create useful models ideally all data of all care providers are understood and learned from; however, this presents challenges in the guise of poor data quality, patient privacy concerns, geographical spread, interoperability and large volume. In radiation oncology, there are many efforts to collect data for research and innovation purposes. Clinical trials are the gold standard when proving any hypothesis that directly affects the patient. Collecting data in registries with strict predefined rules is also a common approach to find answers. A third approach is to develop data stores that can be used by modern machine learning techniques to provide new insights or answer hypotheses. We believe all three approaches have their strengths and weaknesses, but they should all strive to create Findable, Accessible, Interoperable, Reusable (FAIR) data. To learn from these data, we need distributed learning techniques, sending machine learning algorithms to FAIR data stores around the world, learning from trial data, registries and routine clinical data rather than trying to centralize all data. To improve and personalize medicine, rapid learning platforms must be able to process FAIR “Big Data” to evaluate current clinical practice and to guide further innovation. |
format | Online Article Text |
id | pubmed-5605034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | The British Institute of Radiology. |
record_format | MEDLINE/PubMed |
spelling | pubmed-56050342017-09-22 Big Data in radiation therapy: challenges and opportunities Lustberg, Tim van Soest, Johan Jochems, Arthur Deist, Timo van Wijk, Yvonka Walsh, Sean Lambin, Philippe Dekker, Andre Br J Radiol Commentary Data collected and generated by radiation oncology can be classified by the Volume, Variety, Velocity and Veracity (4Vs) of Big Data because they are spread across different care providers and not easily shared owing to patient privacy protection. The magnitude of the 4Vs is substantial in oncology, especially owing to imaging modalities and unclear data definitions. To create useful models ideally all data of all care providers are understood and learned from; however, this presents challenges in the guise of poor data quality, patient privacy concerns, geographical spread, interoperability and large volume. In radiation oncology, there are many efforts to collect data for research and innovation purposes. Clinical trials are the gold standard when proving any hypothesis that directly affects the patient. Collecting data in registries with strict predefined rules is also a common approach to find answers. A third approach is to develop data stores that can be used by modern machine learning techniques to provide new insights or answer hypotheses. We believe all three approaches have their strengths and weaknesses, but they should all strive to create Findable, Accessible, Interoperable, Reusable (FAIR) data. To learn from these data, we need distributed learning techniques, sending machine learning algorithms to FAIR data stores around the world, learning from trial data, registries and routine clinical data rather than trying to centralize all data. To improve and personalize medicine, rapid learning platforms must be able to process FAIR “Big Data” to evaluate current clinical practice and to guide further innovation. The British Institute of Radiology. 2017-01 2016-12-20 /pmc/articles/PMC5605034/ /pubmed/27781485 http://dx.doi.org/10.1259/bjr.20160689 Text en © 2016 The Authors. Published by the British Institute of Radiology This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/, which permits unrestricted non-commercial reuse, provided the original author and source are credited. |
spellingShingle | Commentary Lustberg, Tim van Soest, Johan Jochems, Arthur Deist, Timo van Wijk, Yvonka Walsh, Sean Lambin, Philippe Dekker, Andre Big Data in radiation therapy: challenges and opportunities |
title | Big Data in radiation therapy: challenges and opportunities |
title_full | Big Data in radiation therapy: challenges and opportunities |
title_fullStr | Big Data in radiation therapy: challenges and opportunities |
title_full_unstemmed | Big Data in radiation therapy: challenges and opportunities |
title_short | Big Data in radiation therapy: challenges and opportunities |
title_sort | big data in radiation therapy: challenges and opportunities |
topic | Commentary |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605034/ https://www.ncbi.nlm.nih.gov/pubmed/27781485 http://dx.doi.org/10.1259/bjr.20160689 |
work_keys_str_mv | AT lustbergtim bigdatainradiationtherapychallengesandopportunities AT vansoestjohan bigdatainradiationtherapychallengesandopportunities AT jochemsarthur bigdatainradiationtherapychallengesandopportunities AT deisttimo bigdatainradiationtherapychallengesandopportunities AT vanwijkyvonka bigdatainradiationtherapychallengesandopportunities AT walshsean bigdatainradiationtherapychallengesandopportunities AT lambinphilippe bigdatainradiationtherapychallengesandopportunities AT dekkerandre bigdatainradiationtherapychallengesandopportunities |