Cargando…

A thermostable d-polymerase for mirror-image PCR

Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterpart...

Descripción completa

Detalles Bibliográficos
Autores principales: Pech, Andreas, Achenbach, John, Jahnz, Michael, Schülzchen, Simone, Jarosch, Florian, Bordusa, Frank, Klussmann, Sven
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605242/
https://www.ncbi.nlm.nih.gov/pubmed/28158820
http://dx.doi.org/10.1093/nar/gkx079
Descripción
Sumario:Biological evolution resulted in a homochiral world in which nucleic acids consist exclusively of d-nucleotides and proteins made by ribosomal translation of l-amino acids. From the perspective of synthetic biology, however, particularly anabolic enzymes that could build the mirror-image counterparts of biological macromolecules such as l-DNA or l-RNA are lacking. Based on a convergent synthesis strategy, we have chemically produced and characterized a thermostable mirror-image polymerase that efficiently replicates and amplifies mirror-image (l)-DNA. This artificial enzyme, dubbed d-Dpo4-3C, is a mutant of Sulfolobus solfataricus DNA polymerase IV consisting of 352 d-amino acids. d-Dpo4-3C was reliably deployed in classical polymerase chain reactions (PCR) and it was used to assemble a first mirror-image gene coding for the protein Sso7d. We believe that this d-polymerase provides a valuable tool to further investigate the mysteries of biological (homo)chirality and to pave the way for potential novel life forms running on a mirror-image genome.