Cargando…

Surrogate hosts: Hunting dogs and recolonizing grey wolves share their endoparasites

Understanding how closely related wildlife species and their domesticated counterparts exchange or share parasites, or replace each other in parasite life cycles, is of great interest to veterinary and human public health, and wildlife ecology. Grey wolves (Canis lupus) host and spread endoparasites...

Descripción completa

Detalles Bibliográficos
Autores principales: Lesniak, Ines, Franz, Mathias, Heckmann, Ilja, Greenwood, Alex D., Hofer, Heribert, Krone, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605491/
https://www.ncbi.nlm.nih.gov/pubmed/28951833
http://dx.doi.org/10.1016/j.ijppaw.2017.09.001
Descripción
Sumario:Understanding how closely related wildlife species and their domesticated counterparts exchange or share parasites, or replace each other in parasite life cycles, is of great interest to veterinary and human public health, and wildlife ecology. Grey wolves (Canis lupus) host and spread endoparasites that can either directly infect canid conspecifics or their prey serving as intermediate hosts of indirectly transmitted species. The wolf recolonization of Central Europe represents an opportunity to study parasite transmission dynamics between wildlife and domestic species for cases when a definitive host returns after local extinction – a situation equivalent to a ‘removal experiment’. Here we investigate whether the re–appearance of wolves has increased parasite pressure on hunting dogs – a group of companion animals of particular interest as they have a similar diet to wolves and flush wolf habitats when hunting. We compared prevalence (P) and species richness (SR) of helminths and the protozoan Sarcocystis to determine whether they were higher in hunting dogs from wolf areas (n(dogs) = 49) than a control area (n(dogs) = 29) without wolves. Of particular interest were S. grueneri and S. taeniata, known as ‘wolf specialists’. Five helminth and 11 Sarcocystis species were identified, of which all helminths and eight Sarcocystis species were shared between dogs and wolves. Overall prevalence and species richness of helminths (P:38.5% vs. 24.1%; SR(mean):0.4 vs. 0.3 species) and Sarcocystis (P:63.3% vs. 65.5%, SR(mean):2.1 vs. 1.8 species) did not differ between study sites. However, hunting dogs were significantly more likely to be infected with S. grueneri in wolf areas (P:45.2% vs. 10.5%; p = 0.035). The findings suggest that wolves indirectly increase S. grueneri infection risk for hunting dogs since cervids are intermediate hosts and occasionally fed to dogs. Furthermore, a periodic anthelminthic treatment of hunting dogs may be an effective measure to control helminth infections regardless of wolf presence.