Cargando…

Highly Enhanced TMR Ratio and Δ for Double MgO-based p-MTJ Spin-Valves with Top Co(2)Fe(6)B(2) Free Layer by Nanoscale-thick Iron Diffusion-barrier

For double MgO-based p-MTJ spin-valves with a top Co(2)Fe(6)B(2) free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO cap...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Seung-Eun, Baek, Jong-Ung, Park, Jea-Gun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605541/
https://www.ncbi.nlm.nih.gov/pubmed/28928449
http://dx.doi.org/10.1038/s41598-017-10967-x
Descripción
Sumario:For double MgO-based p-MTJ spin-valves with a top Co(2)Fe(6)B(2) free layer ex-situ annealed at 400 °C, the insertion of a nanoscale-thickness Fe diffusion barrier between the tungsten (W) capping layer and MgO capping layer improved the face-centered-cubic (f.c.c.) crystallinity of both the MgO capping layer and tunneling barrier by dramatically reducing diffusion of W atoms from the W capping layer into the MgO capping layer and tunneling barrier, thereby enhancing the TMR ratio and thermal stability (Δ). In particular, the TMR ratio was extremely sensitive to the thickness of the Fe barrier; it peaked (154%) at about 0.3 nm (the thickness of only two atomic Fe layers). The effect of the diffusion barrier originated from interface strain.