Cargando…

Highly sensitive fiber-optic accelerometer by grating inscription in specific core dip fiber

A highly sensitive fiber-optic accelerometer based on detecting the power output of resonances from the core dip is demonstrated. The sensing probe comprises a compact structure, hereby a short section of specific core (with a significant core dip) fiber stub containing a straight fiber Bragg gratin...

Descripción completa

Detalles Bibliográficos
Autores principales: Rong, Qiangzhou, Guo, Tuan, Bao, Weijia, Shao, Zhihua, Peng, Gang-Ding, Qiao, Xueguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605566/
https://www.ncbi.nlm.nih.gov/pubmed/28928484
http://dx.doi.org/10.1038/s41598-017-12322-6
Descripción
Sumario:A highly sensitive fiber-optic accelerometer based on detecting the power output of resonances from the core dip is demonstrated. The sensing probe comprises a compact structure, hereby a short section of specific core (with a significant core dip) fiber stub containing a straight fiber Bragg grating is spliced to another single-mode fiber via a core self-alignment process. The femtosecond laser side-illumination technique was utilized to ensure that the grating inscription region is precisely positioned and compact in size. Two well-defined core resonances were achieved in reflection: one originates from the core dip and the other originates from fiber core. The key point is that only one of these two reflective resonances exhibits a high sensitivity to fiber bend (and vibration), whereas the other is immune to it. For low frequency (<10 Hz) and weak vibration excitation (<0.3 m/s(2)) measurement, the proposed sensor shows a much higher resolution (1.7 × 10(−3) m/s(2)) by simply monitoring the total power output of the high-order core mode reflection. Moreover, the sensor simultaneously provides an inherent power reference to eliminate unwanted power fluctuations from the light source and transmission lines, thus providing a means of evaluating weak seismic wave at low frequency.