Cargando…
Enhancing Performance of a Hybrid EEG-fNIRS System Using Channel Selection and Early Temporal Features
Brain-Computer Interface (BCI) techniques hold a great promise for neuroprosthetic applications. A desirable BCI system should be portable, minimally invasive, and feature high classification accuracy and efficiency. As two commonly used non-invasive brain imaging modalities, Electroencephalography...
Autores principales: | Li, Rihui, Potter, Thomas, Huang, Weitian, Zhang, Yingchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605645/ https://www.ncbi.nlm.nih.gov/pubmed/28966581 http://dx.doi.org/10.3389/fnhum.2017.00462 |
Ejemplares similares
-
Dynamic cortical connectivity alterations associated with Alzheimer's disease: An EEG and fNIRS integration study
por: Li, Rihui, et al.
Publicado: (2018) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017) -
Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study
por: Chen, Yuxuan, et al.
Publicado: (2020) -
Hybrid fNIRS-EEG based classification of auditory and visual perception processes
por: Putze, Felix, et al.
Publicado: (2014)