Cargando…

Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae

In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytos...

Descripción completa

Detalles Bibliográficos
Autores principales: Al-Saryi, Nadal A., Al-Hejjaj, Murtakab Y, van Roermund, Carlo W. T., Hulmes, Georgia E., Ekal, Lakhan, Payton, Chantell, Wanders, Ronald J. A., Hettema, Ewald H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605654/
https://www.ncbi.nlm.nih.gov/pubmed/28928432
http://dx.doi.org/10.1038/s41598-017-11942-2
_version_ 1783265024779747328
author Al-Saryi, Nadal A.
Al-Hejjaj, Murtakab Y
van Roermund, Carlo W. T.
Hulmes, Georgia E.
Ekal, Lakhan
Payton, Chantell
Wanders, Ronald J. A.
Hettema, Ewald H.
author_facet Al-Saryi, Nadal A.
Al-Hejjaj, Murtakab Y
van Roermund, Carlo W. T.
Hulmes, Georgia E.
Ekal, Lakhan
Payton, Chantell
Wanders, Ronald J. A.
Hettema, Ewald H.
author_sort Al-Saryi, Nadal A.
collection PubMed
description In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD(+)-dependent dehydrogenation of saccharopine to lysine, is another NAD(+)-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD(+) required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions.
format Online
Article
Text
id pubmed-5605654
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56056542017-09-20 Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae Al-Saryi, Nadal A. Al-Hejjaj, Murtakab Y van Roermund, Carlo W. T. Hulmes, Georgia E. Ekal, Lakhan Payton, Chantell Wanders, Ronald J. A. Hettema, Ewald H. Sci Rep Article In Saccharomyces cerevisiae, peroxisomes are the sole site of fatty acid β-oxidation. During this process, NAD(+) is reduced to NADH. When cells are grown on oleate medium, peroxisomal NADH is reoxidised to NAD(+) by malate dehydrogenase (Mdh3p) and reduction equivalents are transferred to the cytosol by the malate/oxaloacetate shuttle. The ultimate step in lysine biosynthesis, the NAD(+)-dependent dehydrogenation of saccharopine to lysine, is another NAD(+)-dependent reaction performed inside peroxisomes. We have found that in glucose grown cells, both the malate/oxaloacetate shuttle and a glycerol-3-phosphate dehydrogenase 1(Gpd1p)-dependent shuttle are able to maintain the intraperoxisomal redox balance. Single mutants in MDH3 or GPD1 grow on lysine-deficient medium, but an mdh3/gpd1Δ double mutant accumulates saccharopine and displays lysine bradytrophy. Lysine biosynthesis is restored when saccharopine dehydrogenase is mislocalised to the cytosol in mdh3/gpd1Δ cells. We conclude that the availability of intraperoxisomal NAD(+) required for saccharopine dehydrogenase activity can be sustained by both shuttles. The extent to which each of these shuttles contributes to the intraperoxisomal redox balance may depend on the growth medium. We propose that the presence of multiple peroxisomal redox shuttles allows eukaryotic cells to maintain the peroxisomal redox status under different metabolic conditions. Nature Publishing Group UK 2017-09-19 /pmc/articles/PMC5605654/ /pubmed/28928432 http://dx.doi.org/10.1038/s41598-017-11942-2 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Al-Saryi, Nadal A.
Al-Hejjaj, Murtakab Y
van Roermund, Carlo W. T.
Hulmes, Georgia E.
Ekal, Lakhan
Payton, Chantell
Wanders, Ronald J. A.
Hettema, Ewald H.
Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title_full Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title_fullStr Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title_full_unstemmed Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title_short Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae
title_sort two nad-linked redox shuttles maintain the peroxisomal redox balance in saccharomyces cerevisiae
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605654/
https://www.ncbi.nlm.nih.gov/pubmed/28928432
http://dx.doi.org/10.1038/s41598-017-11942-2
work_keys_str_mv AT alsaryinadala twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT alhejjajmurtakaby twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT vanroermundcarlowt twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT hulmesgeorgiae twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT ekallakhan twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT paytonchantell twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT wandersronaldja twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae
AT hettemaewaldh twonadlinkedredoxshuttlesmaintaintheperoxisomalredoxbalanceinsaccharomycescerevisiae