Cargando…

Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces

Let [Formula: see text] satisfy that [Formula: see text] , for any given [Formula: see text] , is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text] . The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Bo, Liao, Minfeng, Li, Baode
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605692/
https://www.ncbi.nlm.nih.gov/pubmed/28989256
http://dx.doi.org/10.1186/s13660-017-1501-1
Descripción
Sumario:Let [Formula: see text] satisfy that [Formula: see text] , for any given [Formula: see text] , is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text] . The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz space [Formula: see text] . In this paper, the authors establish the boundedness of Marcinkiewicz integral [Formula: see text] from [Formula: see text] to [Formula: see text] under weaker smoothness conditions assumed on Ω. This result is also new even when [Formula: see text] for all [Formula: see text] , where ϕ is an Orlicz function.