Cargando…

Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing

The influence of an inorganic support – halloysite nanotubes – on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/A...

Descripción completa

Detalles Bibliográficos
Autores principales: Kurczewska, Joanna, Pecyna, Paulina, Ratajczak, Magdalena, Gajęcka, Marzena, Schroeder, Grzegorz
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5605850/
https://www.ncbi.nlm.nih.gov/pubmed/28951678
http://dx.doi.org/10.1016/j.jsps.2017.02.007
Descripción
Sumario:The influence of an inorganic support – halloysite nanotubes – on the release rate and biological activity of the antibiotic encapsulated in alginate-based dressings was studied. The halloysite samples were loaded with approx. 10 wt.% of the antibiotic and then encapsulated in Alginate and Gelatin/Alginate gels. The material functionalized with aliphatic amine significantly extended the release of vancomycin from alginate-based gels as compared to that achieved when silica was used. After 24 h, the released amounts of the antibiotic immobilized at silica reached 70%, while for the drug immobilized at halloysite the released amount of vancomycin reached 44% for Alginate discs. The addition of gelatin resulted in even more prolonged sustained release of the drug. The antibiotic was released from the system with a double barrier with Higuchi kinetic model and Fickian diffusion mechanism. Only the immobilized drug encapsulated in Alginate gel demonstrated very good antimicrobial activity against various bacteria. The inhibition zones were greater than those of the standard discs for the staphylococci and enterococci bacteria tested. The addition of gelatin adversely affected the biological activity of the system. The inhibition zones were smaller than those of the reference samples. A reduction in the drug dose by half had no significant effect on changing the release rate and microbiological activity. The in vivo toxicity studies of the material with immobilized drug were carried out with Acutodesmus acuminatus and Daphnia magna. The material studied had no effect on the living organisms used in the bioassays. The proposed system with a double barrier demonstrated high storage stability.