Cargando…
A rapid seamless method for gene knockout in Pseudomonas aeruginosa
BACKGROUND: Pseudomonas aeruginosa is a model organism for the study of quorum sensing, biofilm formation, and also leading cause of nosocomial infections in immune compromised patients. As such P. aeruginosa is one of the most well studied organisms in terms of its genetics. However, the constructi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606073/ https://www.ncbi.nlm.nih.gov/pubmed/28927382 http://dx.doi.org/10.1186/s12866-017-1112-5 |
_version_ | 1783265097751199744 |
---|---|
author | Huang, Weiliang Wilks, Angela |
author_facet | Huang, Weiliang Wilks, Angela |
author_sort | Huang, Weiliang |
collection | PubMed |
description | BACKGROUND: Pseudomonas aeruginosa is a model organism for the study of quorum sensing, biofilm formation, and also leading cause of nosocomial infections in immune compromised patients. As such P. aeruginosa is one of the most well studied organisms in terms of its genetics. However, the construction of gene deletions and replacements in Pseudomonas aeruginosa is relatively time-consuming, requiring multiple steps including suicide vector construction, conjugation, inactivation with insertion of antibiotic resistance cassettes and allelic exchange. Even employing Gateway recombineering techniques with direct transformation requires a minimum two weeks. METHODS: We have developed a rapid streamlined method to create clean deletion mutants in P. aeruginosa through direct transformation, eliminating the need for the creation of Gateway-compatible suicide vectors. In this method, upstream and downstream sequences of the gene/locus to be deleted are amplified by polymerase chain reaction (PCR) and seamlessly fused with the linearized pEX18Tc sacB suicide plasmid by Gibson assembly. The resulting deletion plasmid is transformed into P. aeruginosa by an electroporation method optimized in this study. The plasmid is then integrated into the chromosome by homologous recombination, and deletion mutants are identified via sacB mediated sucrose counter-selection. RESULTS: The current method was employed to generate clean gene deletions of the heme assimilation system anti-σ factor, hasS and the virulence regulator involving ECF system anti-σ and σ factors vreA and vreI, respectively. The process from plasmid construction to confirmation by DNA sequencing of the gene deletion was completed in one week. Furthermore, the utility of the method is highlighted in the construction of the vreA and vreI deletions, where the start codon of vreA and the stop codon of vreI overlap. Utilizing Gibson assembly deletion mutants were constructed with single base pair precision to generate the respective vreA and vreI deletions, while maintaining the start and stop codon of the respective genes. Overall, this method allows for rapid construction of gene deletions in P. aeruginosa with base pair precision. CONCLUSION: This method from the construction of the suicide vector to sequence confirmation of the unmarked gene deletion can be performed in one week, without the requirement for expensive proprietary reagents or instruments. The precision of Gibson assembly and the fact the accuracy in generating the desirable construct is 95%, makes this a viable and attractive alternative to previous methods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-017-1112-5) contains supplementary material, which is available to authorized users. |
format | Online Article Text |
id | pubmed-5606073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-56060732017-09-20 A rapid seamless method for gene knockout in Pseudomonas aeruginosa Huang, Weiliang Wilks, Angela BMC Microbiol Methodology Article BACKGROUND: Pseudomonas aeruginosa is a model organism for the study of quorum sensing, biofilm formation, and also leading cause of nosocomial infections in immune compromised patients. As such P. aeruginosa is one of the most well studied organisms in terms of its genetics. However, the construction of gene deletions and replacements in Pseudomonas aeruginosa is relatively time-consuming, requiring multiple steps including suicide vector construction, conjugation, inactivation with insertion of antibiotic resistance cassettes and allelic exchange. Even employing Gateway recombineering techniques with direct transformation requires a minimum two weeks. METHODS: We have developed a rapid streamlined method to create clean deletion mutants in P. aeruginosa through direct transformation, eliminating the need for the creation of Gateway-compatible suicide vectors. In this method, upstream and downstream sequences of the gene/locus to be deleted are amplified by polymerase chain reaction (PCR) and seamlessly fused with the linearized pEX18Tc sacB suicide plasmid by Gibson assembly. The resulting deletion plasmid is transformed into P. aeruginosa by an electroporation method optimized in this study. The plasmid is then integrated into the chromosome by homologous recombination, and deletion mutants are identified via sacB mediated sucrose counter-selection. RESULTS: The current method was employed to generate clean gene deletions of the heme assimilation system anti-σ factor, hasS and the virulence regulator involving ECF system anti-σ and σ factors vreA and vreI, respectively. The process from plasmid construction to confirmation by DNA sequencing of the gene deletion was completed in one week. Furthermore, the utility of the method is highlighted in the construction of the vreA and vreI deletions, where the start codon of vreA and the stop codon of vreI overlap. Utilizing Gibson assembly deletion mutants were constructed with single base pair precision to generate the respective vreA and vreI deletions, while maintaining the start and stop codon of the respective genes. Overall, this method allows for rapid construction of gene deletions in P. aeruginosa with base pair precision. CONCLUSION: This method from the construction of the suicide vector to sequence confirmation of the unmarked gene deletion can be performed in one week, without the requirement for expensive proprietary reagents or instruments. The precision of Gibson assembly and the fact the accuracy in generating the desirable construct is 95%, makes this a viable and attractive alternative to previous methods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12866-017-1112-5) contains supplementary material, which is available to authorized users. BioMed Central 2017-09-19 /pmc/articles/PMC5606073/ /pubmed/28927382 http://dx.doi.org/10.1186/s12866-017-1112-5 Text en © The Author(s). 2017 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Huang, Weiliang Wilks, Angela A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title | A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title_full | A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title_fullStr | A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title_full_unstemmed | A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title_short | A rapid seamless method for gene knockout in Pseudomonas aeruginosa |
title_sort | rapid seamless method for gene knockout in pseudomonas aeruginosa |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606073/ https://www.ncbi.nlm.nih.gov/pubmed/28927382 http://dx.doi.org/10.1186/s12866-017-1112-5 |
work_keys_str_mv | AT huangweiliang arapidseamlessmethodforgeneknockoutinpseudomonasaeruginosa AT wilksangela arapidseamlessmethodforgeneknockoutinpseudomonasaeruginosa AT huangweiliang rapidseamlessmethodforgeneknockoutinpseudomonasaeruginosa AT wilksangela rapidseamlessmethodforgeneknockoutinpseudomonasaeruginosa |