Cargando…
Parallelisms and Contrasts in the Diverse Ecologies of the Anaplasma phagocytophilum and Borrelia burgdorferi Complexes of Bacteria in the Far Western United States
Anaplasma phagocytophilum and Borrelia burgdorferi are two tick-borne bacteria that cause disease in people and animals. For each of these bacteria, there is a complex of closely related genospecies and/or strains that are genetically distinct and have been shown through both observational and exper...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2016
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606591/ https://www.ncbi.nlm.nih.gov/pubmed/29056734 http://dx.doi.org/10.3390/vetsci3040026 |
Sumario: | Anaplasma phagocytophilum and Borrelia burgdorferi are two tick-borne bacteria that cause disease in people and animals. For each of these bacteria, there is a complex of closely related genospecies and/or strains that are genetically distinct and have been shown through both observational and experimental studies to have different host tropisms. In this review we compare the known ecologies of these two bacterial complexes in the far western USA and find remarkable similarities, which will help us understand evolutionary histories and coadaptation among vertebrate host, tick vector, and bacteria. For both complexes, sensu stricto genospecies (those that infect humans) share a similar geographic range, are vectored mainly by ticks in the Ixodes ricinus-complex, utilize mainly white-footed mice (Peromyscus leucopus) as a reservoir in the eastern USA and tree squirrels in the far west, and tend to be generalists, infecting a wider variety of vertebrate host species. Other sensu lato genospecies within each complex are generally more specialized, occurring often in local enzootic cycles within a narrow range of vertebrate hosts and specialized vector species. We suggest that these similar ecologies may have arisen through utilization of a generalist tick species as a vector, resulting in a potentially more virulent generalist pathogen that spills over into humans, vs. utilization of a specialized tick vector on a particular vertebrate host species, promoting microbe specialization. Such tight host-vector-pathogen coupling could also facilitate high enzootic prevalence and the evolution of host immune-tolerance and bacterial avirulence. |
---|