Cargando…
Cryogenian evolution of stigmasteroid biosynthesis
Sedimentary hydrocarbon remnants of eukaryotic C(26)–C(30) sterols can be used to reconstruct early algal evolution. Enhanced C(29) sterol abundances provide algal cell membranes a density advantage in large temperature fluctuations. Here, we combined a literature review with new analyses to generat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606710/ https://www.ncbi.nlm.nih.gov/pubmed/28948220 http://dx.doi.org/10.1126/sciadv.1700887 |
_version_ | 1783265163264131072 |
---|---|
author | Hoshino, Yosuke Poshibaeva, Aleksandra Meredith, William Snape, Colin Poshibaev, Vladimir Versteegh, Gerard J. M. Kuznetsov, Nikolay Leider, Arne van Maldegem, Lennart Neumann, Mareike Naeher, Sebastian Moczydłowska, Małgorzata Brocks, Jochen J. Jarrett, Amber J. M. Tang, Qing Xiao, Shuhai McKirdy, David Das, Supriyo Kumar Alvaro, José Javier Sansjofre, Pierre Hallmann, Christian |
author_facet | Hoshino, Yosuke Poshibaeva, Aleksandra Meredith, William Snape, Colin Poshibaev, Vladimir Versteegh, Gerard J. M. Kuznetsov, Nikolay Leider, Arne van Maldegem, Lennart Neumann, Mareike Naeher, Sebastian Moczydłowska, Małgorzata Brocks, Jochen J. Jarrett, Amber J. M. Tang, Qing Xiao, Shuhai McKirdy, David Das, Supriyo Kumar Alvaro, José Javier Sansjofre, Pierre Hallmann, Christian |
author_sort | Hoshino, Yosuke |
collection | PubMed |
description | Sedimentary hydrocarbon remnants of eukaryotic C(26)–C(30) sterols can be used to reconstruct early algal evolution. Enhanced C(29) sterol abundances provide algal cell membranes a density advantage in large temperature fluctuations. Here, we combined a literature review with new analyses to generate a comprehensive inventory of unambiguously syngenetic steranes in Neoproterozoic rocks. Our results show that the capacity for C(29) 24-ethyl-sterol biosynthesis emerged in the Cryogenian, that is, between 720 and 635 million years ago during the Neoproterozoic Snowball Earth glaciations, which were an evolutionary stimulant, not a bottleneck. This biochemical innovation heralded the rise of green algae to global dominance of marine ecosystems and highlights the environmental drivers for the evolution of sterol biosynthesis. The Cryogenian emergence of C(29) sterol biosynthesis places a benchmark for verifying older sterane signatures and sets a new framework for our understanding of early algal evolution. |
format | Online Article Text |
id | pubmed-5606710 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56067102017-09-25 Cryogenian evolution of stigmasteroid biosynthesis Hoshino, Yosuke Poshibaeva, Aleksandra Meredith, William Snape, Colin Poshibaev, Vladimir Versteegh, Gerard J. M. Kuznetsov, Nikolay Leider, Arne van Maldegem, Lennart Neumann, Mareike Naeher, Sebastian Moczydłowska, Małgorzata Brocks, Jochen J. Jarrett, Amber J. M. Tang, Qing Xiao, Shuhai McKirdy, David Das, Supriyo Kumar Alvaro, José Javier Sansjofre, Pierre Hallmann, Christian Sci Adv Research Articles Sedimentary hydrocarbon remnants of eukaryotic C(26)–C(30) sterols can be used to reconstruct early algal evolution. Enhanced C(29) sterol abundances provide algal cell membranes a density advantage in large temperature fluctuations. Here, we combined a literature review with new analyses to generate a comprehensive inventory of unambiguously syngenetic steranes in Neoproterozoic rocks. Our results show that the capacity for C(29) 24-ethyl-sterol biosynthesis emerged in the Cryogenian, that is, between 720 and 635 million years ago during the Neoproterozoic Snowball Earth glaciations, which were an evolutionary stimulant, not a bottleneck. This biochemical innovation heralded the rise of green algae to global dominance of marine ecosystems and highlights the environmental drivers for the evolution of sterol biosynthesis. The Cryogenian emergence of C(29) sterol biosynthesis places a benchmark for verifying older sterane signatures and sets a new framework for our understanding of early algal evolution. American Association for the Advancement of Science 2017-09-20 /pmc/articles/PMC5606710/ /pubmed/28948220 http://dx.doi.org/10.1126/sciadv.1700887 Text en Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). http://creativecommons.org/licenses/by-nc/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (http://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Research Articles Hoshino, Yosuke Poshibaeva, Aleksandra Meredith, William Snape, Colin Poshibaev, Vladimir Versteegh, Gerard J. M. Kuznetsov, Nikolay Leider, Arne van Maldegem, Lennart Neumann, Mareike Naeher, Sebastian Moczydłowska, Małgorzata Brocks, Jochen J. Jarrett, Amber J. M. Tang, Qing Xiao, Shuhai McKirdy, David Das, Supriyo Kumar Alvaro, José Javier Sansjofre, Pierre Hallmann, Christian Cryogenian evolution of stigmasteroid biosynthesis |
title | Cryogenian evolution of stigmasteroid biosynthesis |
title_full | Cryogenian evolution of stigmasteroid biosynthesis |
title_fullStr | Cryogenian evolution of stigmasteroid biosynthesis |
title_full_unstemmed | Cryogenian evolution of stigmasteroid biosynthesis |
title_short | Cryogenian evolution of stigmasteroid biosynthesis |
title_sort | cryogenian evolution of stigmasteroid biosynthesis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606710/ https://www.ncbi.nlm.nih.gov/pubmed/28948220 http://dx.doi.org/10.1126/sciadv.1700887 |
work_keys_str_mv | AT hoshinoyosuke cryogenianevolutionofstigmasteroidbiosynthesis AT poshibaevaaleksandra cryogenianevolutionofstigmasteroidbiosynthesis AT meredithwilliam cryogenianevolutionofstigmasteroidbiosynthesis AT snapecolin cryogenianevolutionofstigmasteroidbiosynthesis AT poshibaevvladimir cryogenianevolutionofstigmasteroidbiosynthesis AT versteeghgerardjm cryogenianevolutionofstigmasteroidbiosynthesis AT kuznetsovnikolay cryogenianevolutionofstigmasteroidbiosynthesis AT leiderarne cryogenianevolutionofstigmasteroidbiosynthesis AT vanmaldegemlennart cryogenianevolutionofstigmasteroidbiosynthesis AT neumannmareike cryogenianevolutionofstigmasteroidbiosynthesis AT naehersebastian cryogenianevolutionofstigmasteroidbiosynthesis AT moczydłowskamałgorzata cryogenianevolutionofstigmasteroidbiosynthesis AT brocksjochenj cryogenianevolutionofstigmasteroidbiosynthesis AT jarrettamberjm cryogenianevolutionofstigmasteroidbiosynthesis AT tangqing cryogenianevolutionofstigmasteroidbiosynthesis AT xiaoshuhai cryogenianevolutionofstigmasteroidbiosynthesis AT mckirdydavid cryogenianevolutionofstigmasteroidbiosynthesis AT dassupriyokumar cryogenianevolutionofstigmasteroidbiosynthesis AT alvarojosejavier cryogenianevolutionofstigmasteroidbiosynthesis AT sansjofrepierre cryogenianevolutionofstigmasteroidbiosynthesis AT hallmannchristian cryogenianevolutionofstigmasteroidbiosynthesis |