Cargando…

Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries

Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and na...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Shitong, Quan, Wei, Zhu, Zhi, Yang, Yong, Liu, Qi, Ren, Yang, Zhang, Xiaoyi, Xu, Rui, Hong, Ye, Zhang, Zhongtai, Amine, Khalil, Tang, Zilong, Lu, Jun, Li, Ju
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5606990/
https://www.ncbi.nlm.nih.gov/pubmed/28931813
http://dx.doi.org/10.1038/s41467-017-00574-9
Descripción
Sumario:Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g(−1) at ~35 C (fully charged within ~100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. So instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.