Cargando…

Laminar differences in decision-related neural activity in dorsal premotor cortex

Dorsal premotor cortex is implicated in somatomotor decisions. However, we do not understand the temporal patterns and laminar organization of decision-related firing rates in dorsal premotor cortex. We recorded neurons from dorsal premotor cortex of monkeys performing a visual discrimination task w...

Descripción completa

Detalles Bibliográficos
Autores principales: Chandrasekaran, Chandramouli, Peixoto, Diogo, Newsome, William T., Shenoy, Krishna V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607001/
https://www.ncbi.nlm.nih.gov/pubmed/28931803
http://dx.doi.org/10.1038/s41467-017-00715-0
Descripción
Sumario:Dorsal premotor cortex is implicated in somatomotor decisions. However, we do not understand the temporal patterns and laminar organization of decision-related firing rates in dorsal premotor cortex. We recorded neurons from dorsal premotor cortex of monkeys performing a visual discrimination task with reaches as the behavioral report. We show that these neurons can be organized along a bidirectional visuomotor continuum based on task-related firing rates. “Increased” neurons at one end of the continuum increased their firing rates ~150 ms after stimulus onset and these firing rates covaried systematically with choice, stimulus difficulty, and reaction time—characteristics of a candidate decision variable. “Decreased” neurons at the other end of the continuum reduced their firing rate after stimulus onset, while “perimovement” neurons at the center of the continuum responded only ~150 ms before movement initiation. These neurons did not show decision variable-like characteristics. “Increased” neurons were more prevalent in superficial layers of dorsal premotor cortex; deeper layers contained more “decreased” and “perimovement” neurons. These results suggest a laminar organization for decision-related responses in dorsal premotor cortex.