Cargando…

Controlled manipulation of oxygen vacancies using nanoscale flexoelectricity

Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of...

Descripción completa

Detalles Bibliográficos
Autores principales: Das, Saikat, Wang, Bo, Cao, Ye, Rae Cho, Myung, Jae Shin, Yeong, Mo Yang, Sang, Wang, Lingfei, Kim, Minu, Kalinin, Sergei V., Chen, Long-Qing, Noh, Tae Won
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607007/
https://www.ncbi.nlm.nih.gov/pubmed/28931810
http://dx.doi.org/10.1038/s41467-017-00710-5
Descripción
Sumario:Oxygen vacancies, especially their distribution, are directly coupled to the electromagnetic properties of oxides and related emergent functionalities that have implications for device applications. Here using a homoepitaxial strontium titanate thin film, we demonstrate a controlled manipulation of the oxygen vacancy distribution using the mechanical force from a scanning probe microscope tip. By combining Kelvin probe force microscopy imaging and phase-field simulations, we show that oxygen vacancies can move under a stress-gradient-induced depolarisation field. When tailored, this nanoscale flexoelectric effect enables a controlled spatial modulation. In motion, the scanning probe tip thereby deterministically reconfigures the spatial distribution of vacancies. The ability to locally manipulate oxygen vacancies on-demand provides a tool for the exploration of mesoscale quantum phenomena and engineering multifunctional oxide devices.