Cargando…
A microtubule-based minimal model for spontaneous and persistent spherical cell polarity
We propose a minimal model for the spontaneous and persistent generation of polarity in a spherical cell based on dynamic microtubules and a single mobile molecular component. This component, dubbed the polarity factor, binds to microtubules nucleated from a centrosome located in the center of the c...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607169/ https://www.ncbi.nlm.nih.gov/pubmed/28931032 http://dx.doi.org/10.1371/journal.pone.0184706 |
_version_ | 1783265238997532672 |
---|---|
author | Foteinopoulos, Panayiotis Mulder, Bela M. |
author_facet | Foteinopoulos, Panayiotis Mulder, Bela M. |
author_sort | Foteinopoulos, Panayiotis |
collection | PubMed |
description | We propose a minimal model for the spontaneous and persistent generation of polarity in a spherical cell based on dynamic microtubules and a single mobile molecular component. This component, dubbed the polarity factor, binds to microtubules nucleated from a centrosome located in the center of the cell, is subsequently delivered to the cell membrane, where it diffuses until it unbinds. The only feedback mechanism we impose is that the residence time of the microtubules at the membrane increases with the local density of the polarity factor. We show analytically that this system supports a stable unipolar symmetry-broken state for a wide range of parameters. We validate the predictions of the model by 2D particle-based simulations. Our model provides a route towards the creation of polarity in a minimal cell-like environment using a biochemical reconstitution approach. |
format | Online Article Text |
id | pubmed-5607169 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56071692017-10-09 A microtubule-based minimal model for spontaneous and persistent spherical cell polarity Foteinopoulos, Panayiotis Mulder, Bela M. PLoS One Research Article We propose a minimal model for the spontaneous and persistent generation of polarity in a spherical cell based on dynamic microtubules and a single mobile molecular component. This component, dubbed the polarity factor, binds to microtubules nucleated from a centrosome located in the center of the cell, is subsequently delivered to the cell membrane, where it diffuses until it unbinds. The only feedback mechanism we impose is that the residence time of the microtubules at the membrane increases with the local density of the polarity factor. We show analytically that this system supports a stable unipolar symmetry-broken state for a wide range of parameters. We validate the predictions of the model by 2D particle-based simulations. Our model provides a route towards the creation of polarity in a minimal cell-like environment using a biochemical reconstitution approach. Public Library of Science 2017-09-20 /pmc/articles/PMC5607169/ /pubmed/28931032 http://dx.doi.org/10.1371/journal.pone.0184706 Text en © 2017 Foteinopoulos, Mulder http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Foteinopoulos, Panayiotis Mulder, Bela M. A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title | A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title_full | A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title_fullStr | A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title_full_unstemmed | A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title_short | A microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
title_sort | microtubule-based minimal model for spontaneous and persistent spherical cell polarity |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607169/ https://www.ncbi.nlm.nih.gov/pubmed/28931032 http://dx.doi.org/10.1371/journal.pone.0184706 |
work_keys_str_mv | AT foteinopoulospanayiotis amicrotubulebasedminimalmodelforspontaneousandpersistentsphericalcellpolarity AT mulderbelam amicrotubulebasedminimalmodelforspontaneousandpersistentsphericalcellpolarity AT foteinopoulospanayiotis microtubulebasedminimalmodelforspontaneousandpersistentsphericalcellpolarity AT mulderbelam microtubulebasedminimalmodelforspontaneousandpersistentsphericalcellpolarity |