Cargando…
High accuracy label-free classification of single-cell kinetic states from holographic cytometry of human melanoma cells
Digital holographic cytometry (DHC) permits label-free visualization of adherent cells. Dozens of cellular features can be derived from segmentation of hologram-derived images. However, the accuracy of single cell classification by these features remains limited for most applications, and lack of st...
Autores principales: | Hejna, Miroslav, Jorapur, Aparna, Song, Jun S., Judson, Robert L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607248/ https://www.ncbi.nlm.nih.gov/pubmed/28931937 http://dx.doi.org/10.1038/s41598-017-12165-1 |
Ejemplares similares
-
AI-aided holographic flow cytometry for label-free identification of ovarian cancer cells in the presence of unbalanced datasets
por: Borrelli, F., et al.
Publicado: (2023) -
Phenotyping neuroblastoma cells through intelligent scrutiny of stain-free biomarkers in holographic flow cytometry
por: Pirone, Daniele, et al.
Publicado: (2023) -
Biophysical Profiling of Sickle Cell Disease Using Holographic Cytometry and Deep Learning
por: Chen, Cindy X., et al.
Publicado: (2023) -
Label‐Free High‐Throughput Leukemia Detection by Holographic Microscopy
por: Ugele, Matthias, et al.
Publicado: (2018) -
Multi-angle pulse shape detection of scattered light in flow cytometry for label-free cell cycle classification
por: Kage, Daniel, et al.
Publicado: (2021)