Cargando…

RORα2 requires LSD1 to enhance tumor progression in breast cancer

Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligan...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Kyeongkyu, Lee, Ji Min, Yu, Young Suk, Kim, Hyunkyung, Nam, Hye Jin, Moon, Hyeong-Gon, Noh, Dong-Young, Kim, Keun Il, Fang, Sungsoon, Baek, Sung Hee
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607251/
https://www.ncbi.nlm.nih.gov/pubmed/28931919
http://dx.doi.org/10.1038/s41598-017-12344-0
Descripción
Sumario:Retinoic acid-related orphan receptor α (RORα) regulates diverse physiological processes, including inflammatory responses, lipid metabolism, circadian rhythm, and cancer biology. RORα has four different isoforms which have distinct N-terminal domains but share identical DNA binding domain and ligand binding domain in human. However, lack of specific antibody against each RORα isoform makes biochemical studies on each RORα isoform remain unclear. Here, we generate RORα2-specific antibody and characterize the role of RORα2 in promoting tumor progression in breast cancer. RORα2 requires lysine specific demethylase 1 (LSD1/KDM1A) as a coactivator for transcriptional activation of RORα2 target genes, exemplified by CTNND1. Intriguingly, RORα2 and LSD1 protein levels are dramatically elevated in human breast cancer specimens compared to normal counterparts. Taken together, our studies indicate that LSD1-mediated RORα2 transcriptional activity is important to promote tumor cell migration in human breast cancer as well as breast cancer cell lines. Therefore, our data establish that suppression of LSD1-mediated RORα2 transcriptional activity may be potent therapeutic strategy to attenuate tumor cell migration in human breast cancer.