Cargando…

Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)

Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demon...

Descripción completa

Detalles Bibliográficos
Autores principales: Min, Chul-Hee, Goth, F., Lutz, P., Bentmann, H., Kang, B. Y., Cho, B. K., Werner, J., Chen, K.-S., Assaad, F., Reinert, F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607333/
https://www.ncbi.nlm.nih.gov/pubmed/28931836
http://dx.doi.org/10.1038/s41598-017-12080-5
_version_ 1783265277224419328
author Min, Chul-Hee
Goth, F.
Lutz, P.
Bentmann, H.
Kang, B. Y.
Cho, B. K.
Werner, J.
Chen, K.-S.
Assaad, F.
Reinert, F.
author_facet Min, Chul-Hee
Goth, F.
Lutz, P.
Bentmann, H.
Kang, B. Y.
Cho, B. K.
Werner, J.
Chen, K.-S.
Assaad, F.
Reinert, F.
author_sort Min, Chul-Hee
collection PubMed
description Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators. The temperature dependence of the gap formation in both local moment and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor and choosing the input parameter set within the mixed valence regime, we can unambiguously link the theoretical energy scales to the experimental ones. As a particularly important result, we find improved consistency between the scaled DMFT density of states and the photoemission near-gap spectra of samarium hexaboride (SmB(6)).
format Online
Article
Text
id pubmed-5607333
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56073332017-09-24 Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) Min, Chul-Hee Goth, F. Lutz, P. Bentmann, H. Kang, B. Y. Cho, B. K. Werner, J. Chen, K.-S. Assaad, F. Reinert, F. Sci Rep Article Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators. The temperature dependence of the gap formation in both local moment and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor and choosing the input parameter set within the mixed valence regime, we can unambiguously link the theoretical energy scales to the experimental ones. As a particularly important result, we find improved consistency between the scaled DMFT density of states and the photoemission near-gap spectra of samarium hexaboride (SmB(6)). Nature Publishing Group UK 2017-09-20 /pmc/articles/PMC5607333/ /pubmed/28931836 http://dx.doi.org/10.1038/s41598-017-12080-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Min, Chul-Hee
Goth, F.
Lutz, P.
Bentmann, H.
Kang, B. Y.
Cho, B. K.
Werner, J.
Chen, K.-S.
Assaad, F.
Reinert, F.
Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title_full Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title_fullStr Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title_full_unstemmed Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title_short Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
title_sort matching dmft calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of smb(6)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607333/
https://www.ncbi.nlm.nih.gov/pubmed/28931836
http://dx.doi.org/10.1038/s41598-017-12080-5
work_keys_str_mv AT minchulhee matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT gothf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT lutzp matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT bentmannh matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT kangby matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT chobk matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT wernerj matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT chenks matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT assaadf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6
AT reinertf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6