Cargando…
Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6)
Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demon...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607333/ https://www.ncbi.nlm.nih.gov/pubmed/28931836 http://dx.doi.org/10.1038/s41598-017-12080-5 |
_version_ | 1783265277224419328 |
---|---|
author | Min, Chul-Hee Goth, F. Lutz, P. Bentmann, H. Kang, B. Y. Cho, B. K. Werner, J. Chen, K.-S. Assaad, F. Reinert, F. |
author_facet | Min, Chul-Hee Goth, F. Lutz, P. Bentmann, H. Kang, B. Y. Cho, B. K. Werner, J. Chen, K.-S. Assaad, F. Reinert, F. |
author_sort | Min, Chul-Hee |
collection | PubMed |
description | Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators. The temperature dependence of the gap formation in both local moment and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor and choosing the input parameter set within the mixed valence regime, we can unambiguously link the theoretical energy scales to the experimental ones. As a particularly important result, we find improved consistency between the scaled DMFT density of states and the photoemission near-gap spectra of samarium hexaboride (SmB(6)). |
format | Online Article Text |
id | pubmed-5607333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-56073332017-09-24 Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) Min, Chul-Hee Goth, F. Lutz, P. Bentmann, H. Kang, B. Y. Cho, B. K. Werner, J. Chen, K.-S. Assaad, F. Reinert, F. Sci Rep Article Paramagnetic heavy fermion insulators consist of fully occupied quasiparticle bands inherent to Fermi liquid theory. The gap emergence below a characteristic temperature is the ultimate sign of coherence for a many-body system, which in addition can induce a non-trivial band topology. Here, we demonstrate a simple and efficient method to compare a model study and an experimental result for heavy fermion insulators. The temperature dependence of the gap formation in both local moment and mixed valence regimes is captured within the dynamical mean field (DMFT) approximation to the periodic Anderson model (PAM). Using the topological coherence temperature as the scaling factor and choosing the input parameter set within the mixed valence regime, we can unambiguously link the theoretical energy scales to the experimental ones. As a particularly important result, we find improved consistency between the scaled DMFT density of states and the photoemission near-gap spectra of samarium hexaboride (SmB(6)). Nature Publishing Group UK 2017-09-20 /pmc/articles/PMC5607333/ /pubmed/28931836 http://dx.doi.org/10.1038/s41598-017-12080-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Min, Chul-Hee Goth, F. Lutz, P. Bentmann, H. Kang, B. Y. Cho, B. K. Werner, J. Chen, K.-S. Assaad, F. Reinert, F. Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title | Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title_full | Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title_fullStr | Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title_full_unstemmed | Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title_short | Matching DMFT calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of SmB(6) |
title_sort | matching dmft calculations with photoemission spectra of heavy fermion insulators: universal properties of the near-gap spectra of smb(6) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5607333/ https://www.ncbi.nlm.nih.gov/pubmed/28931836 http://dx.doi.org/10.1038/s41598-017-12080-5 |
work_keys_str_mv | AT minchulhee matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT gothf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT lutzp matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT bentmannh matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT kangby matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT chobk matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT wernerj matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT chenks matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT assaadf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 AT reinertf matchingdmftcalculationswithphotoemissionspectraofheavyfermioninsulatorsuniversalpropertiesoftheneargapspectraofsmb6 |