Cargando…

The role of the human Duffy antigen receptor for chemokines in malaria susceptibility: current opinions and future treatment prospects

The Duffy antigen receptor for chemokine (DARC) is a nonspecific receptor for several proinflammatory cytokines. It is homologous to the G-protein chemokine receptor superfamily, which is suggested to function as a scavenger in many inflammatory-and proinflammatory-related diseases. G-protein chemok...

Descripción completa

Detalles Bibliográficos
Autores principales: Ntumngia, Francis B, Thomson-Luque, Richard, Pires, Camilla V, Adams, John H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2016
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608092/
https://www.ncbi.nlm.nih.gov/pubmed/28943755
http://dx.doi.org/10.2147/JRLCR.S99725
Descripción
Sumario:The Duffy antigen receptor for chemokine (DARC) is a nonspecific receptor for several proinflammatory cytokines. It is homologous to the G-protein chemokine receptor superfamily, which is suggested to function as a scavenger in many inflammatory-and proinflammatory-related diseases. G-protein chemokine receptors are also known to play a critical role in infectious diseases; they are commonly used as entry vehicles by infectious agents. A typical example is the chemokine receptor CCR5 or CXCR4 used by HIV for infecting target cells. In malaria, DARC is considered an essential receptor that mediates the entry of the human and zoonotic malaria parasites Plasmodium vivax and Plasmodium knowlesi into human reticulocytes and erythrocytes, respectively. This process is mediated through interaction with the parasite ligand known as the Duffy binding protein (DBP). Most therapeutic strategies have been focused on blocking the interaction between DBP and DARC by targeting the parasite ligand, while strategies targeting the receptor, DARC, have not been intensively investigated. The rapid increase in drug resistance and the lack of new effective drugs or a vaccine for malaria constitute a major threat and a need for novel therapeutics to combat disease. This review explores strategies that can be used to target the receptor. Inhibitors of DARC, which block DBP–DARC interaction, can potentially provide an effective strategy for preventing malaria caused by P. vivax.