Cargando…
Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea
The Qiongdongnan Basin is a strongly overpressured basin with the maximum pressure coefficient (the ratio of the actual pore pressure versus hydrostatic pressure at the same depth) over 2.27. However, there exists a widespread low-overpressure interval between the strong overpressure intervals in th...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608191/ https://www.ncbi.nlm.nih.gov/pubmed/28934237 http://dx.doi.org/10.1371/journal.pone.0183676 |
_version_ | 1783265398384230400 |
---|---|
author | Xu, Qinghai Shi, Wanzhong Xie, Yuhong Wang, Zhenfeng Li, Xusheng Tong, Chuanxin |
author_facet | Xu, Qinghai Shi, Wanzhong Xie, Yuhong Wang, Zhenfeng Li, Xusheng Tong, Chuanxin |
author_sort | Xu, Qinghai |
collection | PubMed |
description | The Qiongdongnan Basin is a strongly overpressured basin with the maximum pressure coefficient (the ratio of the actual pore pressure versus hydrostatic pressure at the same depth) over 2.27. However, there exists a widespread low-overpressure interval between the strong overpressure intervals in the Yanan Sag of western basin. The mechanisms of the low-overpressure interval are not well understood. Three main approaches, pore pressure test data and well-log analysis, pressure prediction based on the relationship between the deviation of the velocity and the pressure coefficients, and numerical modeling, were employed to illustrate the distribution and evolution of the low-overpressure interval. And we analyzed and explained the phenomenon of the low-overpressure interval that is both underlain and overlain by high overpressure internal. The low-overpressure interval between the strong overpressure intervals can be identified and modelled by drilling data of P-wave sonic and the mud weight, and the numerical modeling using the PetroMod software. Results show that the low-overpressure interval is mainly composed of sandstone sediments. The porosities of sandstone in the low-overpressure interval primarily range from 15%-20%, and the permeabilities range from 10–100 md. Analysis of the geochemical parameters of C1, iC4/nC4, ΔR3, and numerical modeling shows that oil and gas migrated upward into the sandstone in the low-overpressure interval, and then migrated along the sandstone of low-overpressure interval into the Yacheng uplift. The low-overpressure both underlain and overlain by overpressure resulted from the fluids migrating along the sandstones in the low-overpressure interval into the Yacheng uplift since 1.9Ma. The mudstone in the strong overpressure interval is good cap overlain the sandstone of low-overpressure interval, therefore up-dip pinchouts or isolated sandstone in the low-overpressure interval locating the migration path of oil and gas are good plays for hydrocarbon exploration. |
format | Online Article Text |
id | pubmed-5608191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56081912017-10-09 Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea Xu, Qinghai Shi, Wanzhong Xie, Yuhong Wang, Zhenfeng Li, Xusheng Tong, Chuanxin PLoS One Research Article The Qiongdongnan Basin is a strongly overpressured basin with the maximum pressure coefficient (the ratio of the actual pore pressure versus hydrostatic pressure at the same depth) over 2.27. However, there exists a widespread low-overpressure interval between the strong overpressure intervals in the Yanan Sag of western basin. The mechanisms of the low-overpressure interval are not well understood. Three main approaches, pore pressure test data and well-log analysis, pressure prediction based on the relationship between the deviation of the velocity and the pressure coefficients, and numerical modeling, were employed to illustrate the distribution and evolution of the low-overpressure interval. And we analyzed and explained the phenomenon of the low-overpressure interval that is both underlain and overlain by high overpressure internal. The low-overpressure interval between the strong overpressure intervals can be identified and modelled by drilling data of P-wave sonic and the mud weight, and the numerical modeling using the PetroMod software. Results show that the low-overpressure interval is mainly composed of sandstone sediments. The porosities of sandstone in the low-overpressure interval primarily range from 15%-20%, and the permeabilities range from 10–100 md. Analysis of the geochemical parameters of C1, iC4/nC4, ΔR3, and numerical modeling shows that oil and gas migrated upward into the sandstone in the low-overpressure interval, and then migrated along the sandstone of low-overpressure interval into the Yacheng uplift. The low-overpressure both underlain and overlain by overpressure resulted from the fluids migrating along the sandstones in the low-overpressure interval into the Yacheng uplift since 1.9Ma. The mudstone in the strong overpressure interval is good cap overlain the sandstone of low-overpressure interval, therefore up-dip pinchouts or isolated sandstone in the low-overpressure interval locating the migration path of oil and gas are good plays for hydrocarbon exploration. Public Library of Science 2017-09-21 /pmc/articles/PMC5608191/ /pubmed/28934237 http://dx.doi.org/10.1371/journal.pone.0183676 Text en © 2017 Xu et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Xu, Qinghai Shi, Wanzhong Xie, Yuhong Wang, Zhenfeng Li, Xusheng Tong, Chuanxin Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title | Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title_full | Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title_fullStr | Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title_full_unstemmed | Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title_short | Identification of low-overpressure interval and its implication to hydrocarbon migration: Case study in the Yanan sag of the Qiongdongnan Basin, South China Sea |
title_sort | identification of low-overpressure interval and its implication to hydrocarbon migration: case study in the yanan sag of the qiongdongnan basin, south china sea |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608191/ https://www.ncbi.nlm.nih.gov/pubmed/28934237 http://dx.doi.org/10.1371/journal.pone.0183676 |
work_keys_str_mv | AT xuqinghai identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea AT shiwanzhong identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea AT xieyuhong identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea AT wangzhenfeng identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea AT lixusheng identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea AT tongchuanxin identificationoflowoverpressureintervalanditsimplicationtohydrocarbonmigrationcasestudyintheyanansagoftheqiongdongnanbasinsouthchinasea |