Cargando…

Multiple Cayley-Klein metric learning

As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric...

Descripción completa

Detalles Bibliográficos
Autores principales: Bi, Yanhong, Fan, Bin, Wu, Fuchao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608239/
https://www.ncbi.nlm.nih.gov/pubmed/28934244
http://dx.doi.org/10.1371/journal.pone.0184865
Descripción
Sumario:As a specific kind of non-Euclidean metric lies in projective space, Cayley-Klein metric has been recently introduced in metric learning to deal with the complex data distributions in computer vision tasks. In this paper, we extend the original Cayley-Klein metric to the multiple Cayley-Klein metric, which is defined as a linear combination of several Cayley-Klein metrics. Since Cayley-Klein is a kind of non-linear metric, its combination could model the data space better, thus lead to an improved performance. We show how to learn a multiple Cayley-Klein metric by iterative optimization over single Cayley-Klein metric and their combination coefficients under the objective to maximize the performance on separating inter-class instances and gathering intra-class instances. Our experiments on several benchmarks are quite encouraging.