Cargando…

Study of myelin structure changes during the nerve fibers demyelination

Raman, NMR and EPR spectroscopy and electrophysiology methods were used to investigate the excitability and the packaging of myelin lipid layers and its viscosity during nerve exposure to pronase E. It was established that during exposure of nerve to pronase E the action potential (AP) conduction ve...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodionova, Natalia N., Allakhverdiev, Elvin S., Maksimov, Georgy V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608327/
https://www.ncbi.nlm.nih.gov/pubmed/28934355
http://dx.doi.org/10.1371/journal.pone.0185170
Descripción
Sumario:Raman, NMR and EPR spectroscopy and electrophysiology methods were used to investigate the excitability and the packaging of myelin lipid layers and its viscosity during nerve exposure to pronase E. It was established that during exposure of nerve to pronase E the action potential (AP) conduction velocity and the Schwann cell (SC) (or myelin) water ordering increases, but the nerve myelin refractive index and internode incisions numbers decrease. This effect included two periods–short- and long-time period, probably, because the first one depends on SC protein changes and the second one–on the nerve fiber internode demyelination. It was concluded that high electrical resistance of myelin, which is important for a series of AP conduction velocity, not only depends on nerve fiber diameter and the myelin lipid composition, but also on the regularity of myelin lipid fatty acids and myelin lipid layer packing during the axoglial interaction.