Cargando…
Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact
BACKGROUND: Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. METHODS: We del...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608361/ https://www.ncbi.nlm.nih.gov/pubmed/28934300 http://dx.doi.org/10.1371/journal.pone.0185154 |
_version_ | 1783265429216559104 |
---|---|
author | Tomasevic, Leo Takemi, Mitsuaki Siebner, Hartwig Roman |
author_facet | Tomasevic, Leo Takemi, Mitsuaki Siebner, Hartwig Roman |
author_sort | Tomasevic, Leo |
collection | PubMed |
description | BACKGROUND: Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. METHODS: We delivered monophasic and biphasic TMS to a melon as head phantom and to four healthy participants and recorded the pulse artefact at 5 kHz with a TMS-compatible EEG system. Pulse delivery was either synchronized or non-synchronized to the clock of the EEG recording system. The effects of synchronization were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. RESULTS & CONCLUSION: Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse artefact in recordings from the phantom or from the scalp. Reduced trial-to-trial variability was also observed at high sampling frequencies. The use of a soft sheet reduced the variability in recordings on the head phantom, but not in human participants. Effective reduction of the trial-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas. |
format | Online Article Text |
id | pubmed-5608361 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-56083612017-10-09 Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact Tomasevic, Leo Takemi, Mitsuaki Siebner, Hartwig Roman PLoS One Research Article BACKGROUND: Electroencephalography (EEG) can capture the cortical response evoked by transcranial magnetic stimulation (TMS). The TMS pulse provokes a large artefact, which obscures the cortical response in the first milliseconds after TMS. Removing this artefact remains a challenge. METHODS: We delivered monophasic and biphasic TMS to a melon as head phantom and to four healthy participants and recorded the pulse artefact at 5 kHz with a TMS-compatible EEG system. Pulse delivery was either synchronized or non-synchronized to the clock of the EEG recording system. The effects of synchronization were tested at 10 and 20 kHz using the head phantom. We also tested the effect of a soft sheet placed between the stimulation coil and recording electrodes in both human and melon. RESULTS & CONCLUSION: Synchronizing TMS and data acquisition markedly reduced trial-to-trial variability of the pulse artefact in recordings from the phantom or from the scalp. Reduced trial-to-trial variability was also observed at high sampling frequencies. The use of a soft sheet reduced the variability in recordings on the head phantom, but not in human participants. Effective reduction of the trial-to-trial variability renders it possible to create an artefact template for off-line filtering. Template-based subtraction of the artefact from the EEG signals is a prerequisite to effectively recover the immediate physiological response in the stimulated cortex and inter-connected areas. Public Library of Science 2017-09-21 /pmc/articles/PMC5608361/ /pubmed/28934300 http://dx.doi.org/10.1371/journal.pone.0185154 Text en © 2017 Tomasevic et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Tomasevic, Leo Takemi, Mitsuaki Siebner, Hartwig Roman Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title | Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title_full | Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title_fullStr | Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title_full_unstemmed | Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title_short | Synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
title_sort | synchronizing the transcranial magnetic pulse with electroencephalographic recordings effectively reduces inter-trial variability of the pulse artefact |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608361/ https://www.ncbi.nlm.nih.gov/pubmed/28934300 http://dx.doi.org/10.1371/journal.pone.0185154 |
work_keys_str_mv | AT tomasevicleo synchronizingthetranscranialmagneticpulsewithelectroencephalographicrecordingseffectivelyreducesintertrialvariabilityofthepulseartefact AT takemimitsuaki synchronizingthetranscranialmagneticpulsewithelectroencephalographicrecordingseffectivelyreducesintertrialvariabilityofthepulseartefact AT siebnerhartwigroman synchronizingthetranscranialmagneticpulsewithelectroencephalographicrecordingseffectivelyreducesintertrialvariabilityofthepulseartefact |