Cargando…

Discrimination and Characterization of Heterocellular Populations Using Quantitative Imaging Techniques

Cellular processes are complex and result from the interplay between multiple cell types and their environment. Existing cell biology techniques often do not allow for accurate interpretation of this interplay. Using a quantitative imaging-based approach, we present a high-content protocol for chara...

Descripción completa

Detalles Bibliográficos
Autores principales: Garvey, Colleen M., Gerhart, Torin A., Mumenthaler, Shannon M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608532/
https://www.ncbi.nlm.nih.gov/pubmed/28715383
http://dx.doi.org/10.3791/55844
Descripción
Sumario:Cellular processes are complex and result from the interplay between multiple cell types and their environment. Existing cell biology techniques often do not allow for accurate interpretation of this interplay. Using a quantitative imaging-based approach, we present a high-content protocol for characterizing the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations to changes in environmental stimuli. We highlight our ability to distinguish between cell types based upon either fluorescence intensity or inherent morphology features depending on the application. This platform allows for a more comprehensive characterization of subpopulation response to perturbation while utilizing shorter time, smaller amounts of reagents, and lower likelihood of error than traditional cell biology assays. However, in some cases, cell populations may be difficult to identify and quantitate based on complex cellular features and will require additional troubleshooting; we highlight some of these circumstances in the protocol. We demonstrate this application using response to drug in a cancer model; however, it can easily be applied more broadly to other physiological processes. This protocol allows one to identify subpopulations within a co-culture system and characterize the particular response of each to external stimuli.