Cargando…

Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions

Nature precisely manipulates primary monomer sequences in biopolymers. In synthetic polymer sequences, this precision has been limited because of the lack of polymerization techniques for conventional polymer synthesis. Engineering the primary monomer sequence of a polymer main chain represents a co...

Descripción completa

Detalles Bibliográficos
Autores principales: Hirao, Takehiro, Kudo, Hiroaki, Amimoto, Tomoko, Haino, Takeharu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608752/
https://www.ncbi.nlm.nih.gov/pubmed/28935856
http://dx.doi.org/10.1038/s41467-017-00683-5
Descripción
Sumario:Nature precisely manipulates primary monomer sequences in biopolymers. In synthetic polymer sequences, this precision has been limited because of the lack of polymerization techniques for conventional polymer synthesis. Engineering the primary monomer sequence of a polymer main chain represents a considerable challenge in polymer science. Here, we report the development of sequence-controlled supramolecular terpolymerization via a self-sorting behavior among three sets of monomers possessing mismatched host–guest pairs. Complementary biscalix[5]arene-C(60), bisporphyrin-trinitrofluorenone (TNF), and Hamilton’s bis(acetamidopyridinyl)isophthalamide-barbiturate hydrogen-bonding host–guest complexes are separately incorporated into heteroditopic monomers that then generate an ABC sequence-controlled supramolecular terpolymer. The polymeric nature of the supramolecular terpolymer is confirmed in both solution and solid states. Our synthetic methodology may pave an avenue for constructing polymers with tailored sequences that are associated with advanced functions.