Cargando…

Quantitative unique continuation for the linear coupled heat equations

In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of [Formula: see text] with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined un...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Guojie, Li, Keqiang, Li, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608838/
https://www.ncbi.nlm.nih.gov/pubmed/28989260
http://dx.doi.org/10.1186/s13660-017-1508-7
_version_ 1783265501143629824
author Zheng, Guojie
Li, Keqiang
Li, Jun
author_facet Zheng, Guojie
Li, Keqiang
Li, Jun
author_sort Zheng, Guojie
collection PubMed
description In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of [Formula: see text] with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined uniquely by its value on an arbitrary open subset ω of Ω at any given positive time T.
format Online
Article
Text
id pubmed-5608838
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Springer International Publishing
record_format MEDLINE/PubMed
spelling pubmed-56088382017-10-05 Quantitative unique continuation for the linear coupled heat equations Zheng, Guojie Li, Keqiang Li, Jun J Inequal Appl Research In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of [Formula: see text] with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined uniquely by its value on an arbitrary open subset ω of Ω at any given positive time T. Springer International Publishing 2017-09-21 2017 /pmc/articles/PMC5608838/ /pubmed/28989260 http://dx.doi.org/10.1186/s13660-017-1508-7 Text en © The Author(s) 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Research
Zheng, Guojie
Li, Keqiang
Li, Jun
Quantitative unique continuation for the linear coupled heat equations
title Quantitative unique continuation for the linear coupled heat equations
title_full Quantitative unique continuation for the linear coupled heat equations
title_fullStr Quantitative unique continuation for the linear coupled heat equations
title_full_unstemmed Quantitative unique continuation for the linear coupled heat equations
title_short Quantitative unique continuation for the linear coupled heat equations
title_sort quantitative unique continuation for the linear coupled heat equations
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608838/
https://www.ncbi.nlm.nih.gov/pubmed/28989260
http://dx.doi.org/10.1186/s13660-017-1508-7
work_keys_str_mv AT zhengguojie quantitativeuniquecontinuationforthelinearcoupledheatequations
AT likeqiang quantitativeuniquecontinuationforthelinearcoupledheatequations
AT lijun quantitativeuniquecontinuationforthelinearcoupledheatequations