Cargando…
Quantitative unique continuation for the linear coupled heat equations
In this paper, we established a quantitative unique continuation results for a coupled heat equations, with the homogeneous Dirichlet boundary condition, on a bounded convex domain Ω of [Formula: see text] with smooth boundary ∂Ω. Our result shows that the value of the solutions can be determined un...
Autores principales: | Zheng, Guojie, Li, Keqiang, Li, Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608838/ https://www.ncbi.nlm.nih.gov/pubmed/28989260 http://dx.doi.org/10.1186/s13660-017-1508-7 |
Ejemplares similares
-
Quantitative unique continuation for the heat equations with inverse square potential
por: Zheng, Guojie, et al.
Publicado: (2018) -
Unique continuation for the magnetic Schrödinger equation
por: Laestadius, Andre, et al.
Publicado: (2020) -
Uniqueness of the Hadamard-type integral equations
por: Li, Chenkuan
Publicado: (2021) -
Linear equations
por: Cohn, P M
Publicado: (1958) -
Numerical solution of the non-linear heat equation for a gravitational-wave antenna
por: Coccia, E, et al.
Publicado: (1982)