Cargando…
Old Yellow Enzyme homologues in Mucor circinelloides: expression profile and biotransformation
The reduction of C=C double bond, a key reaction in organic synthesis, is mostly achieved by traditional chemical methods. Therefore, the search for enzymes capable of performing this reaction is rapidly increasing. Old Yellow Enzymes (OYEs) are flavin-dependent oxidoreductases, initially isolated f...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608841/ https://www.ncbi.nlm.nih.gov/pubmed/28935878 http://dx.doi.org/10.1038/s41598-017-12545-7 |
Sumario: | The reduction of C=C double bond, a key reaction in organic synthesis, is mostly achieved by traditional chemical methods. Therefore, the search for enzymes capable of performing this reaction is rapidly increasing. Old Yellow Enzymes (OYEs) are flavin-dependent oxidoreductases, initially isolated from Saccharomyces pastorianus. In this study, the presence and activation of putative OYE enzymes was investigated in the filamentous fungus Mucor circinelloides, which was previously found to mediate C=C reduction. Following an in silico approach, using S. pastorianus OYE1 amminoacidic sequence as template, ten putative genes were identified in the genome of M. circinelloides. A phylogenetic analysis revealed a high homology of McOYE1-9 with OYE1-like proteins while McOYE10 showed similarity with thermophilic-like OYEs. The activation of mcoyes was evaluated during the transformation of three different model substrates. Cyclohexenone, α-methylcinnamaldehyde and methyl cinnamate were completely reduced in few hours and the induction of gene expression, assessed by qRT-PCR, was generally fast, suggesting a substrate-dependent activation. Eight genes were activated in the tested conditions suggesting that they may encode for active OYEs. Their expression over time correlated with C=C double bond reduction. |
---|