Cargando…

Interlayer excitons in a bulk van der Waals semiconductor

Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationles...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, Ashish, Drüppel, Matthias, Schmidt, Robert, Deilmann, Thorsten, Schneider, Robert, Molas, Maciej R., Marauhn, Philipp, Michaelis de Vasconcellos, Steffen, Potemski, Marek, Rohlfing, Michael, Bratschitsch, Rudolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608874/
https://www.ncbi.nlm.nih.gov/pubmed/28935879
http://dx.doi.org/10.1038/s41467-017-00691-5
Descripción
Sumario:Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe(2), we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.