Cargando…

Interlayer excitons in a bulk van der Waals semiconductor

Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationles...

Descripción completa

Detalles Bibliográficos
Autores principales: Arora, Ashish, Drüppel, Matthias, Schmidt, Robert, Deilmann, Thorsten, Schneider, Robert, Molas, Maciej R., Marauhn, Philipp, Michaelis de Vasconcellos, Steffen, Potemski, Marek, Rohlfing, Michael, Bratschitsch, Rudolf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608874/
https://www.ncbi.nlm.nih.gov/pubmed/28935879
http://dx.doi.org/10.1038/s41467-017-00691-5
_version_ 1783265506252292096
author Arora, Ashish
Drüppel, Matthias
Schmidt, Robert
Deilmann, Thorsten
Schneider, Robert
Molas, Maciej R.
Marauhn, Philipp
Michaelis de Vasconcellos, Steffen
Potemski, Marek
Rohlfing, Michael
Bratschitsch, Rudolf
author_facet Arora, Ashish
Drüppel, Matthias
Schmidt, Robert
Deilmann, Thorsten
Schneider, Robert
Molas, Maciej R.
Marauhn, Philipp
Michaelis de Vasconcellos, Steffen
Potemski, Marek
Rohlfing, Michael
Bratschitsch, Rudolf
author_sort Arora, Ashish
collection PubMed
description Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe(2), we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures.
format Online
Article
Text
id pubmed-5608874
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-56088742017-11-20 Interlayer excitons in a bulk van der Waals semiconductor Arora, Ashish Drüppel, Matthias Schmidt, Robert Deilmann, Thorsten Schneider, Robert Molas, Maciej R. Marauhn, Philipp Michaelis de Vasconcellos, Steffen Potemski, Marek Rohlfing, Michael Bratschitsch, Rudolf Nat Commun Article Bound electron–hole pairs called excitons govern the electronic and optical response of many organic and inorganic semiconductors. Excitons with spatially displaced wave functions of electrons and holes (interlayer excitons) are important for Bose–Einstein condensation, superfluidity, dissipationless current flow, and the light-induced exciton spin Hall effect. Here we report on the discovery of interlayer excitons in a bulk van der Waals semiconductor. They form due to strong localization and spin-valley coupling of charge carriers. By combining high-field magneto-reflectance experiments and ab initio calculations for 2H-MoTe(2), we explain their salient features: the positive sign of the g-factor and the large diamagnetic shift. Our investigations solve the long-standing puzzle of positive g-factors in transition metal dichalcogenides, and pave the way for studying collective phenomena in these materials at elevated temperatures. Nature Publishing Group UK 2017-09-21 /pmc/articles/PMC5608874/ /pubmed/28935879 http://dx.doi.org/10.1038/s41467-017-00691-5 Text en © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Arora, Ashish
Drüppel, Matthias
Schmidt, Robert
Deilmann, Thorsten
Schneider, Robert
Molas, Maciej R.
Marauhn, Philipp
Michaelis de Vasconcellos, Steffen
Potemski, Marek
Rohlfing, Michael
Bratschitsch, Rudolf
Interlayer excitons in a bulk van der Waals semiconductor
title Interlayer excitons in a bulk van der Waals semiconductor
title_full Interlayer excitons in a bulk van der Waals semiconductor
title_fullStr Interlayer excitons in a bulk van der Waals semiconductor
title_full_unstemmed Interlayer excitons in a bulk van der Waals semiconductor
title_short Interlayer excitons in a bulk van der Waals semiconductor
title_sort interlayer excitons in a bulk van der waals semiconductor
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5608874/
https://www.ncbi.nlm.nih.gov/pubmed/28935879
http://dx.doi.org/10.1038/s41467-017-00691-5
work_keys_str_mv AT aroraashish interlayerexcitonsinabulkvanderwaalssemiconductor
AT druppelmatthias interlayerexcitonsinabulkvanderwaalssemiconductor
AT schmidtrobert interlayerexcitonsinabulkvanderwaalssemiconductor
AT deilmannthorsten interlayerexcitonsinabulkvanderwaalssemiconductor
AT schneiderrobert interlayerexcitonsinabulkvanderwaalssemiconductor
AT molasmaciejr interlayerexcitonsinabulkvanderwaalssemiconductor
AT marauhnphilipp interlayerexcitonsinabulkvanderwaalssemiconductor
AT michaelisdevasconcellossteffen interlayerexcitonsinabulkvanderwaalssemiconductor
AT potemskimarek interlayerexcitonsinabulkvanderwaalssemiconductor
AT rohlfingmichael interlayerexcitonsinabulkvanderwaalssemiconductor
AT bratschitschrudolf interlayerexcitonsinabulkvanderwaalssemiconductor