Cargando…
Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals
[Image: see text] Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying f...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609121/ https://www.ncbi.nlm.nih.gov/pubmed/28841295 http://dx.doi.org/10.1021/jacs.7b07788 |
_version_ | 1783265555437846528 |
---|---|
author | van der Stam, Ward Gudjonsdottir, Solrun Evers, Wiel H. Houtepen, Arjan J. |
author_facet | van der Stam, Ward Gudjonsdottir, Solrun Evers, Wiel H. Houtepen, Arjan J. |
author_sort | van der Stam, Ward |
collection | PubMed |
description | [Image: see text] Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >10(22) cm(–3) to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li(+)). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li(+)) or leads to permanent changes in doping density (for Cu(+)). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (E(g) = 2.0 eV, hole density 10(22) cm(–3), strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (E(g) = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu(+) ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu(2)S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm ∼145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows. |
format | Online Article Text |
id | pubmed-5609121 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-56091212017-09-25 Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals van der Stam, Ward Gudjonsdottir, Solrun Evers, Wiel H. Houtepen, Arjan J. J Am Chem Soc [Image: see text] Control over the doping density in copper sulfide nanocrystals is of great importance and determines its use in optoelectronic applications such as NIR optical switches and photovoltaic devices. Here, we demonstrate that we can reversibly control the hole carrier density (varying from >10(22) cm(–3) to intrinsic) in copper sulfide nanocrystals by electrochemical methods. We can control the type of charge injection, i.e., capacitive charging or ion intercalation, via the choice of the charge compensating cation (e.g., ammonium salts vs Li(+)). Further, the type of intercalating ion determines whether the charge injection is fully reversible (for Li(+)) or leads to permanent changes in doping density (for Cu(+)). Using fully reversible lithium intercalation allows us to switch between thin films of covellite CuS NCs (E(g) = 2.0 eV, hole density 10(22) cm(–3), strong localized surface plasmon resonance) and low-chalcocite CuLiS NCs (E(g) = 1.2 eV, intrinsic, no localized surface plasmon resonance), and back. Electrochemical Cu(+) ion intercalation leads to a permanent phase transition to intrinsic low-chalcocite Cu(2)S nanocrystals that display air stable fluorescence, centered around 1050 nm (fwhm ∼145 meV, PLQY ca. 1.8%), which is the first observation of narrow near-infrared fluorescence for copper sulfide nanocrystals. The dynamic control over the hole doping density and fluorescence of copper sulfide nanocrystals presented in this work and the ability to switch between plasmonic and fluorescent semiconductor nanocrystals might lead to their successful implementation into photovoltaic devices, NIR optical switches and smart windows. American Chemical Society 2017-08-25 2017-09-20 /pmc/articles/PMC5609121/ /pubmed/28841295 http://dx.doi.org/10.1021/jacs.7b07788 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | van der Stam, Ward Gudjonsdottir, Solrun Evers, Wiel H. Houtepen, Arjan J. Switching between Plasmonic and Fluorescent Copper Sulfide Nanocrystals |
title | Switching
between Plasmonic and Fluorescent Copper
Sulfide Nanocrystals |
title_full | Switching
between Plasmonic and Fluorescent Copper
Sulfide Nanocrystals |
title_fullStr | Switching
between Plasmonic and Fluorescent Copper
Sulfide Nanocrystals |
title_full_unstemmed | Switching
between Plasmonic and Fluorescent Copper
Sulfide Nanocrystals |
title_short | Switching
between Plasmonic and Fluorescent Copper
Sulfide Nanocrystals |
title_sort | switching
between plasmonic and fluorescent copper
sulfide nanocrystals |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609121/ https://www.ncbi.nlm.nih.gov/pubmed/28841295 http://dx.doi.org/10.1021/jacs.7b07788 |
work_keys_str_mv | AT vanderstamward switchingbetweenplasmonicandfluorescentcoppersulfidenanocrystals AT gudjonsdottirsolrun switchingbetweenplasmonicandfluorescentcoppersulfidenanocrystals AT everswielh switchingbetweenplasmonicandfluorescentcoppersulfidenanocrystals AT houtepenarjanj switchingbetweenplasmonicandfluorescentcoppersulfidenanocrystals |