Cargando…
Strategies for combating persister cell and biofilm infections
Bacterial cells are constantly exposed to environmental stress; for example, almost all cells must endure starvation, and antimicrobials, of course, are administered to kill bacteria. These stressed cells enter a resting state known as persistence in which they become tolerant to nearly all antibiot...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5609227/ https://www.ncbi.nlm.nih.gov/pubmed/28696066 http://dx.doi.org/10.1111/1751-7915.12774 |
Sumario: | Bacterial cells are constantly exposed to environmental stress; for example, almost all cells must endure starvation, and antimicrobials, of course, are administered to kill bacteria. These stressed cells enter a resting state known as persistence in which they become tolerant to nearly all antibiotics without undergoing genetic change. These dormant cells survive courses of antibiotics, as antibiotics are most effective against actively metabolizing cells, and reconstitute infections. In humans, most of these bacterial infections occur in biofilms in which bacteria attach to one another via secreted proteins, polysaccharides and even DNA. Herein, biotechnological methods are described to combat persister cells and to eradicate biofilms by understanding the genetic basis of both phenomena. |
---|